Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 057502    DOI: 10.1088/1674-1056/adc672
RAPID COMMUNICATION Prev   Next  

Scaling corrections in driven critical dynamics: Application to the two-dimensional dimerized quantum Heisenberg model

Jing-Wen Liu(刘静雯)1, Shuai Yin(阴帅)2, and Yu-Rong Shu(舒玉蓉)1,†
1 School of Physics, Guangzhou University, Guangzhou 510275, China;
2 Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  Driven critical dynamics in quantum phase transitions holds significant theoretical importance, and also has practical applications in fast-developing quantum devices. While scaling corrections have been shown to play important roles in fully characterizing equilibrium quantum criticality, their impact on nonequilibrium critical dynamics has not been extensively explored. In this work, we investigate the driven critical dynamics in a two-dimensional quantum Heisenberg model. We find that in this model the scaling corrections arising from both finite system size and finite driving rate must be incorporated into the finite-time scaling form in order to properly describe the nonequilibrium scaling behaviors. In addition, improved scaling relations are obtained from the expansion of the full scaling form. We numerically verify these scaling forms and improved scaling relations for different starting states using the nonequilibrium quantum Monte Carlo algorithm.
Keywords:  driven critical dynamics      scaling correction      quantum Monte Carlo  
Received:  13 February 2025      Revised:  27 March 2025      Accepted manuscript online:  28 March 2025
PACS:  75.40.Gb (Dynamic properties?)  
  05.70.Jk (Critical point phenomena)  
  64.60.Ht (Dynamic critical phenomena)  
  75.40.Mg (Numerical simulation studies)  
Fund: The authors thank Fan Zhong for helpful discussions. Project supported by the National Natural Science Foundation of China (Grant Nos. 12104109, 12222515, and 12075324), the Science and Technology Projects in Guangzhou (Grant No. 2024A04J2092), and the Science and Technology Projects in Guangdong Province (Grant No. 211193863020).
Corresponding Authors:  Yu-Rong Shu     E-mail:  yrshu@gzhu.edu.cn

Cite this article: 

Jing-Wen Liu(刘静雯), Shuai Yin(阴帅), and Yu-Rong Shu(舒玉蓉) Scaling corrections in driven critical dynamics: Application to the two-dimensional dimerized quantum Heisenberg model 2025 Chin. Phys. B 34 057502

[1] Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435
[2] Dziarmaga J 2010 Advances in Physics 59 1063
[3] Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2011 Rev. Mod. Phys. 83 863
[4] D’Alessio L, Kafri Y, Polkovnikov A and Rigol M 2016 Advances in Physics 65 239
[5] Mitra A 2018 Annual Review of Condensed Matter Physics 9 245
[6] Kibble T W B 1976 J. Phys. A: Math. Gen. 9 1387
[7] Zurek W H 1985 Nature 317 505
[8] Laguna P and Zurek W H 1997 Phys. Rev. Lett. 78 2519
[9] Hindmarsh M and Rajantie A 2000 Phys. Rev. Lett. 85 4660
[10] Chuang I, Durrer R, Turok N and Yurke B 1991 Science 251 1336
[11] Dziarmaga J 1998 Phys. Rev. Lett. 81 5485
[12] Zurek W H, Dorner U and Zoller P 2005 Phys. Rev. Lett. 95 105701
[13] Dziarmaga J 2005 Phys. Rev. Lett. 95 245701
[14] Damski B and Zurek W H 2007 Phys. Rev. Lett. 99 130402
[15] Lamporesi G, Donadello S, Serafini S, Dalfovo F and Ferrari G 2013 Nat. Phys. 9 656
[16] Navon N, Gaunt A L, Smith R P and Hadzibabic Z 2015 Science 347 167
[17] Du K, Fang X, Won C, De C, Huang F T, Xu W, You H, Gómez-Ruiz F J, del Campo A and Cheong S W 2023 Nat. Phys. 19 1495
[18] Gong S, Zhong F, Huang X and Fan S 2010 New J. Phys. 12 043036
[19] Zhong F and Xu Z 2005 Phys. Rev. B 71 132402
[20] Zhong F 2011 Applications of Monte Carlo method in science and engineering, edited by Mordechai S (IntechOpen, Rijeka)
[21] Huang Y, Yin S, Feng B and Zhong F 2014 Phys. Rev. B 90 134108
[22] Feng B, Yin S and Zhong F 2016 Phys. Rev. B 94 144103
[23] Yin S, Mai P and Zhong F 2014 Phys. Rev. B 89 094108
[24] Zeng Z, Yu Y K, Li Z X, Li Z X and Yin S 2024 arXiv:2403.19258 [cond-mat.str-el]
[25] Zeng Z, Yu Y K, Li Z X and Yin S 2024 arXiv:2408.06138 [condmat. str-el]
[26] Wang W, Liu S, Li J, Zhang S X and Yin S 2024 arXiv:2411.06648 [quant-ph]
[27] Deng S, Ortiz G and Viola L 2009 Europhys. Lett. 84 67008
[28] De Grandi C, Polkovnikov A and Sandvik A W 2011 Phys. Rev. B 84 224303
[29] Kolodrubetz M, Clark B K and Huse D A 2012 Phys. Rev. Lett. 109 015701
[30] Chandran A, Erez A, Gubser S S and Sondhi S L 2012 Phys. Rev. B 86 064304
[31] Clark L W, Feng L and Chin C 2016 Science 354 606
[32] Keesling A, Omran A, Levine H, et al. 2019 Nature 568 207
[33] Ebadi S, Keesling A, Cain M, et al. 2022 Science 376 1209
[34] King A D, Raymond J, Lanting T, et al. 2023 Nature 617 61
[35] Sondhi S L, Girvin S M, Carini J P and Shahar D 1997 Rev. Mod. Phys. 69 315
[36] Sandvik A W 2010 AIP Conference Proceedings 1297 135
[37] Chakravarty S, Halperin B I and Nelson D R 1988 Phys. Rev. Lett. 60 1057
[38] Singh R R P, Gelfand M P and Huse D A 1988 Phys. Rev. Lett. 61 2484
[39] Singh R R P 1989 Phys. Rev. B 39 9760
[40] Millis A J and Monien H 1993 Phys. Rev. Lett. 70 2810
[41] Chubukov A V, Sachdev S and Ye J 1994 Phys. Rev. B 49 11919
[42] Troyer M, Kontani H and Ueda K 1996 Phys. Rev. Lett. 76 3822
[43] Kim J K and Troyer M 1998 Phys. Rev. Lett. 80 2705
[44] Matsumoto M, Yasuda C, Todo S and Takayama H 2001 Phys. Rev. B 65 014407
[45] Wang L, Beach K S D and Sandvik A W 2006 Phys. Rev. B 73 014431
[46] Giamarchi T, Ruegg C and Tchernyshyov O 2008 Nat. Phys. 4 198
[47] Sachdev S 2008 Nat. Phys. 4 173
[48] Merchant P, Normand B, Kramer KW, Boehm M, McMorrow D F and Ruegg C 2014 Nat. Phys 10 373
[49] Lohöfer M, Coletta T, Joshi D G, Assaad F F, Vojta M, Wessel S and Mila F 2015 Phys. Rev. B 92 245137
[50] Wenzel S, Bogacz L and Janke W 2008 Phys. Rev. Lett. 101 127202
[51] Qin Y Q, Normand B, Sandvik A W and Meng Z Y 2015 Phys. Rev. B 92 214401
[52] Ma N, Weinberg P, Shao H, Guo W, Yao D X and Sandvik A W 2018 Phys. Rev. Lett. 121 117202
[53] Wu J, Yang W, Wu C and Si Q 2018 Phys. Rev. B 97 224405
[54] Tan D R, Li C D and Jiang F J 2018 Phys. Rev. B 97 094405
[55] Tan D R and Jiang F J 2020 Phys. Rev. B 101 054420
[56] Sandvik A W and Scalapino D J 1994 Phys. Rev. Lett. 72 2777
[57] Rønnow H M, McMorrow D F, Coldea R, Harrison A, Youngson I D, Perring T G, Aeppli G, Syljuåsen O, Lefmann K and Rischel C 2001 Phys. Rev. Lett. 87 037202
[58] Manousakis E 1991 Rev. Mod. Phys. 63 1
[59] Löhneysen H v, Rosch A, Vojta M and Wölfle P 2007 Rev. Mod. Phys. 79 1015
[60] Shu Y R, Jian S K, Sandvik A W and Yin S 2025 Nat. Commun. 16 3402
[61] De Grandi C, Polkovnikov A and Sandvik A W 2013 J. Phys.: Condens. Matter 25 404216
[62] Liu C W, Polkovnikov A and Sandvik A W 2013 Phys. Rev. B 87 174302
[63] Guida R and Zinn-Justin J 1998 J. Phys. A: Math. Gen. 31 8103
[64] Cai J Q, Shu Y R, Rao X Q and Yin S 2024 Phys. Rev. B 109 184303
[65] Liu C W, Polkovnikov A and Sandvik A W 2014 Phys. Rev. B 89 054307
[1] Analysis of pseudo-random number generators in QMC-SSE method
Dong-Xu Liu(刘东旭), Wei Xu(徐维), and Xue-Feng Zhang(张学锋). Chin. Phys. B, 2024, 33(3): 037509.
[2] Neural network analytic continuation for Monte Carlo: Improvement by statistical errors
Kai-Wei Sun(孙恺伟) and Fa Wang(王垡). Chin. Phys. B, 2023, 32(7): 070705.
[3] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[4] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[5] Magnetic excitations of diagonally coupled checkerboards
Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新). Chin. Phys. B, 2021, 30(10): 107505.
[6] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[7] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[8] Quantum Monte Carlo study of the dominating pairing symmetry in doped honeycomb lattice
Xingchuan Zhu(朱兴川), Tao Ying(应涛), Huaiming Guo(郭怀明), Shiping Feng(冯世平). Chin. Phys. B, 2019, 28(7): 077401.
[9] Typicality at quantum-critical points
Lu Liu(刘录), Anders W Sandvik, Wenan Guo(郭文安). Chin. Phys. B, 2018, 27(8): 087501.
[10] Asymmetric response of magnetic impurity in Bernal-stacked bilayer honeycomb lattice
Jin-Hua Sun(孙金华), Ho-Kin Tang(邓皓键). Chin. Phys. B, 2018, 27(7): 077502.
[11] Quantum Monte Carlo study of hard-core bosons in Creutz ladder with zero flux
Yang Lin(林洋), Weichang Hao(郝维昌), Huaiming Guo(郭怀明). Chin. Phys. B, 2018, 27(1): 010204.
[12] Kernel polynomial representation for imaginary-time Green's functions in continuous-time quantum Monte Carlo impurity solver
Li Huang(黄理). Chin. Phys. B, 2016, 25(11): 117101.
No Suggested Reading articles found!