ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Controllable optical bistability in a three-mode optomechanical system with a membrane resonator |
Jiakai Yan(闫甲楷), Xiaofei Zhu(朱小霏), Bin Chen(陈彬) |
Department of Physics, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China;Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan 030024, China |
|
|
Abstract We study the optical bistability (OB) in a three-mode cavity optomechanical system, where an oscillating membrane of perfect reflection is inserted between two fixed mirrors of partial transmission. By investigating the behavior of steady state solutions, we find that the left and right cavities will exhibit the bistable behavior simultaneously in this optomechanical system by adjusting the left and right coupling fields. In addition, one can control the OB threshold and the width of the OB curve via adjusting the coupling strength, the detuning, and the decay rate. Moreover, we further illustrate the OB appearing in the cavity by the effective potential as a function of the position.
|
Received: 08 May 2018
Accepted manuscript online:
|
PACS:
|
42.65.Pc
|
(Optical bistability, multistability, and switching, including local field effects)
|
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504258 and 11347181), the Natural Science Foundation of Shanxi Province, China (Grant No. 2014021011-1), and the Qualified Personnel Foundation of Taiyuan University of Technology, China (Grant No. tyutrc201245a). |
Corresponding Authors:
Bin Chen
E-mail: chenbin@tyut.edu.cn
|
Cite this article:
Jiakai Yan(闫甲楷), Xiaofei Zhu(朱小霏), Bin Chen(陈彬) Controllable optical bistability in a three-mode optomechanical system with a membrane resonator 2018 Chin. Phys. B 27 074214
|
[1] |
Aldana S, Bruder C and Nunnenkamp A 2014 Phys. Rev. A 90 063810
|
[2] |
Yan D, Wang Z H, Ren C N, Gao H, Li H and Wu J H 2015 Phys. Rev. A 91 023813
|
[3] |
Kazemi S H, Ghanbari S and Mahmoudi M 2016 Laser Phys. 26 055502
|
[4] |
Jiang C, Liu H X, Cui Y S and Li X W 2013 Phys. Rev. A 88 055801
|
[5] |
Kyriienko O, Liew T C H and Shelykh I A 2014 Phys. Rev. Lett. 112 076402
|
[6] |
Asadpour S H, Solookinejad G, Panahi M and Sangachin E A 2016 Chin. Phys. B 25 064201
|
[7] |
Yang S, Amri M A and Zubairy M S 2013 Phys. Rev. A 87 033836
|
[8] |
Zheng Q, Li S C, Zhang X P, You T J and Fu L B 2012 Chin. Phys. B 21 093702
|
[9] |
Xiong H, Si L G, Zheng A S, Yang X and Wu Y 2012 Phys. Rev. A 86 013815
|
[10] |
Xiong H, Si L G, Lü X Y, Yang X and Wu Y 2013 Opt. Lett. 38 353
|
[11] |
Chen B, Wang L D, Zhang J, Zhai A P and Xue H B 2016 Phys. Lett. A 798 380
|
[12] |
Wang L D, Yan J K, Zhu X F and Chen B 2017 Physica E 89 134
|
[13] |
Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
|
[14] |
Kronwald A and Marquardt F 2013 Phys. Rev. Lett. 111 133601
|
[15] |
Yan X B, Gu K H, Fu C B, Cui C L and Wu J H 2014 Chin. Phys. B 23 114201
|
[16] |
Li L C, Rao S, Xu J and Hu X M 2015 Chin. Phys. B 24 054205
|
[17] |
Yan X B, Yang L, Tian X D, Liu Y M and Zhang Y 2014 Acta Phys. Sin. 63 204201 (in Chinese)
|
[18] |
Chan J, Mayer Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M and Painter O 2011 Nature 478 89
|
[19] |
Millen J, Fonseca P Z G, Mavrogordatos T, Monteiro T S and Barker P F 2015 Phys. Rev. Lett. 114 123602
|
[20] |
Peterson R W, Purdy T P, Kampe N S, Andrews R W, Yu P L, Lehnert K W and Regal C A 2016 Phys. Rev. Lett. 116 063601
|
[21] |
Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B 22 114213
|
[22] |
Hamedi H R, Mehmannavaz M R and Afshari H 2015 Chin. Phys. B 24 084211
|
[23] |
Ai J F, Chen A X and Deng L 2013 Chin. Phys. B 22 024209
|
[24] |
Kanamoto R and Meystre P 2010 Phys. Rev. Lett. 104 063601
|
[25] |
Li H, Sheng C X and Chen Q 2012 Chin. Phys. Lett. 29 054201
|
[26] |
Wu Y M, Chen G Q, Ma C Q, Xue S Z and Zhu Z W 2012 Chin. Phys. Lett. 29 037802
|
[27] |
Lorente R M, Martin A E, Roldan E, Staliunas K, Valcarcel G J and Silva F 2015 Phys. Rev. A 92 053858
|
[28] |
Kolpakov S, Silva F, Valcarcel G J, Roldan E and Staliunas K 2012 Phys. Rev. A 85 025805
|
[29] |
Melo N R, Wade C G, Sibalic N, Kondo J M, Adams C S and Weatherill K J 2016 Phys. Rev. A 93 063863
|
[30] |
Martin A E, Quesada M M, Taranenko V B, Roldan E and Valcarcel G J 2006 Phys. Rev. Lett. 97 093903
|
[31] |
Marino F, Giacomelli G and Barland S 2014 Phys. Rev. Lett. 112 103901
|
[32] |
Labouvie R, Santra B, Heun S and Ott H 2016 Phys. Rev. Lett. 116 235302
|
[33] |
Brennecke F, Ritter S, Donner T and Esslinger T 2008 Science 322 235
|
[34] |
Groblacher S, Hammerer K, Vanner M R and Aspelmeyer M 2009 Nature 460 724
|
[35] |
Agarwal G S 2011 Phys. Rev. A 83 023802
|
[36] |
Seok H, Buchmann L F, Wright E M and Meystre P 2013 Phys. Rev. A 88 063850
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|