Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 110311    DOI: 10.1088/1674-1056/ac16ca
GENERAL Prev   Next  

Nearly invariant boundary entanglement in optomechanical systems

Shi-Wei Cui(崔世威)1,2, Zhi-Jiao Deng(邓志姣)1,2,†, Chun-Wang Wu(吴春旺)1,2, and Qing-Xia Meng(孟庆霞)3
1 Department of Physics, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China;
2 Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China;
3 Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  In order to understand our previous numerical finding that steady-state entanglement along the instability boundary remains unchanged in a three-mode optomechanical system [Phys. Rev. A 101 023838 (2020)], we investigate in detail the boundary entanglement in a simpler two-mode optomechanical system. Studies show that both the mechanism to generate entanglement and the parameter dependence of boundary entanglement are quite similar in these two models. Therefore, the two-mode system has captured the main features in the three-mode system. With the help of analytical calculations and discussing in a much bigger parameter interval, we find that the unchanging behavior previously discovered is actually an extremely slow changing behavior of the boundary entanglement function, and most importantly, this nearly invariant boundary entanglement is a general phenomenon via parametric down conversion process in the weak dissipation regime. This is by itself interesting as threshold quantum signatures in optomechanical phonon lasers, or may have potential value in related applications based on boundary quantum properties.
Keywords:  boundary entanglement      optomechanical system  
Received:  19 June 2021      Revised:  17 July 2021      Accepted manuscript online:  22 July 2021
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574398, 11904402, 12074433, and 12004430) and the National Basic Research Program of China (Grant No. 2016YFA0301903).
Corresponding Authors:  Zhi-Jiao Deng     E-mail:  dengzhijiao926@hotmail.com

Cite this article: 

Shi-Wei Cui(崔世威), Zhi-Jiao Deng(邓志姣), Chun-Wang Wu(吴春旺), and Qing-Xia Meng(孟庆霞) Nearly invariant boundary entanglement in optomechanical systems 2021 Chin. Phys. B 30 110311

[1] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[2] Kippenberg T J and Vahala K J 2007 Opt. Express 15 17172
[3] Peterson G A, Kotler S, Lecocq F, Cicak K, Jin Y, Simmonds R W, Aumentado J and Teufel J D 2019 Phys. Rev. Lett. 123 247701
[4] Liao J Q, Huang J F, Tian L, Kuang L M and Sun C P 2020 Phys. Rev. A 101 063802
[5] Marquardt F and Girvin S M 2009 Physics 2 40
[6] Aspelmeyer M, Meystre P and Schwab K 2012 Phys. Today 65 29
[7] Ludwig M, Kubala B and Marquardt F 2008 New J. Phys. 10 095013
[8] Xu X, Gullans M and Taylor J M 2015 Phys. Rev. A 91 013818
[9] Deng Z J, Habraken S J M and Marquardt F 2016 New J. Phys. 18 063022
[10] Dutta S and Cooper N R 2019 Phys. Rev. Lett. 123 250401
[11] Meng Q X, Deng Z J, Zhu Z and Huang L 2020 Phys. Rev. A 101 023838
[12] Meng Q X, Deng Z J and Cui S W 2020 Commun. Theor. Phys. 72 115101
[13] Law C K 1995 Phys. Rev. A 51 2537
[14] Roque T F, Marquardt F and Yevtushenko O M 2020 New J. Phys. 22 013049
[15] Ghobadi R, Bahrampour A R and Simon C 2011 Phys. Rev. A 84 033846
[16] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[17] Nejad A A, Askari H R and Baghshahi H R 2017 Chin. Phys. Lett. 34 084205
[18] Benguria R and Kac M 1981 Phys. Rev. Lett. 46 1
[19] Aldana S, Bruder C and Nunnenkamp A 2013 Phys. Rev. A 88 043826
[20] Marquardt F, Harris J G E and Girvin S M 2006 Phys. Rev. Lett. 96 103901
[21] Bakemeier L, Alvermann A and Fehske H 2015 Phys. Rev. Lett. 114 013601
[22] Wang G, Huang L, Lai Y C and Grebogi C 2014 Phys. Rev. Lett. 112 110406
[23] Wang Y D and Clerk A A 2013 Phys. Rev. Lett. 110 253601
[24] Tian L 2013 Phys. Rev. Lett. 110 233602
[25] Yan X B 2017 Phys. Rev. A 96 053831
[26] Yan X B, Deng Z J, Tian Y D and Wu J H 2019 Opt. Express 27 24393
[27] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[28] Wu Q, Xiao Y and Zhang Z M 2015 Chin. Phys. B 25 014023
[29] Nunnenkamp A, Sudhir V, Feofanov A K, Roulet A and Kippenberg T J 2014 Phys. Rev. Lett. 113 023604
[30] Hong S, Riedinger R, Marinković I, Wallucks A, Hofer S G, Norte R A, Aspelmeyer M and Grö blacher S 2017 Science 358 203
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[5] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[6] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[7] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[8] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[9] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[10] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[11] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[12] The optical nonreciprocal response based on a four-mode optomechanical system
Jing Wang(王婧). Chin. Phys. B, 2020, 29(3): 034210.
[13] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[14] Entangling two oscillating mirrors in an optomechanical system via a flying atom
Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(7): 074209.
[15] Controllable optical bistability in a three-mode optomechanical system with a membrane resonator
Jiakai Yan(闫甲楷), Xiaofei Zhu(朱小霏), Bin Chen(陈彬). Chin. Phys. B, 2018, 27(7): 074214.
No Suggested Reading articles found!