Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 074501    DOI: 10.1088/1674-1056/27/7/074501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Decaying solitary waves propagating in one-dimensional damped granular chain

Zongbin Song(宋宗斌)1,2, Xueying Yang(杨雪滢)1,2, Wenxing Feng(封文星)1,2, Zhonghong Xi(席忠红)1,2,3, Liejuan Li(李烈娟)1,2, Yuren Shi(石玉仁)1,2
1 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;
2 Laboratory of Atomic Molecular Physics & Functional Material of Gansu Province, Lanzhou 730070, China;
3 College of Physics and Hydropower Engineering, Gansu Normal University For Nationalities, Hezuo 747000, China
Abstract  We numerically investigate the nonlinear waves propagating in a one-dimensional particle chain when the damping effect is taken into account. It is found that decaying solitary waves exist, in which the amplitude of the wave decreases exponentially as time increases. Meanwhile, the velocity of the solitary wave also slows down as time goes. This result implies that the damping coefficient is an important parameter in such a nonlinear system. Theoretical analysis has also been done by the reductive perturbation method. The result indicates that the nonlinear waves propagating in such a system can be described by the damped KdV equation.
Keywords:  damping granular chain      solitary wave      damped KdV equation  
Received:  19 October 2017      Revised:  21 March 2018      Accepted manuscript online: 
PACS:  45.05.+x (General theory of classical mechanics of discrete systems)  
  05.45.-a (Nonlinear dynamics and chaos)  
  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
  45.70.-n (Granular systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11565021 and 11047010) and the Scientific Research Foundation of Northwest Normal University, China (Grant No. NWNU-LKQN-16-3).
Corresponding Authors:  Yuren Shi     E-mail:  shiyr@nwnu.edu.cn

Cite this article: 

Zongbin Song(宋宗斌), Xueying Yang(杨雪滢), Wenxing Feng(封文星), Zhonghong Xi(席忠红), Liejuan Li(李烈娟), Yuren Shi(石玉仁) Decaying solitary waves propagating in one-dimensional damped granular chain 2018 Chin. Phys. B 27 074501

[1] Nesterenko V F 1983 J. Appl. Mech. Tech. Phys. 5 733
[2] Lazaridi A N and Nesterenko V F 1985 J. Appl. Mech. Tech. Phys. 26 405
[3] Wen Z Y, Wang S J, Zhang X M and Li L 2007 Chin. Phys. Lett. 24 2887
[4] Xia J H, Wang P J and Liu C S 2012 Chin. Phys. B 21 024501
[5] Ponson L, Boechler N, Lai Y M, Porter M A, Kevrekidis P G and Daraio C 2010 Phys. Rev. E 82 021301
[6] Huang K, Miao G Q, Zhang P, Yun Y and Wei R J 2006 Phys. Rev. E 73 041302
[7] Wang P J, Xia J H, Li Y D and Liu C S 2007 Phys. Rev. E 76 041305
[8] Zheng H P, Jiang Y M and Peng Z 2013 Chin. Phys. B 22 040511
[9] Zhou Z G, Jiang Y M and Hou M Y 2017 Chin. Phys. B 26 084502
[10] Friesecke G and Wattis J A D 1994 Commun. Math. Phys. 161 391
[11] Sen S and Sinkovits R S 1996 Phys. Rev. E 54 6857
[12] Coste C, Falcon E and Fauve S 1997 Phys. Rev. E 56 6104
[13] Sen S, Manciu M and Wright J D 1998 Phys. Rev. E 57 2386
[14] Hinch E J and Saint-Jean S 1999 Proc. R. Soc. A 455 3201
[15] Hong J and Xu A 2001 Phys. Rev. E 63 061310
[16] Manciu M, Sen S and Hurd A J 2001 Physica (Amsterdam) 157D 226
[17] Sen S and Manciu M 2001 Phys. Rev. E 64 056605
[18] Lee J, Park S and Yu I 2003 Phys. Rev. E 67 066607
[19] Kenkre V M and Lindenberg K 2003 AIP Conf. Proc. (New York:American Institute of physics) p. 658
[20] Nakagawa M, Agui J H, Wu D T and Extramiana D V 2003 Granul. Matter 4 167
[21] Rosas A and Lindenberg K 2004 Phys. Rev. E 69 037601
[22] Sen S and Hunt M L 2001 MRS Symposia Proceedings (Pittsburgh:Material Research Society) p. 627
[23] Daraio C, Nesterenko V F, Herbold E and Jin S 2005 Phys. Rev. E 72 016603
[24] Hertz H 1881 J. Reine Angew. Math. 92 156
[25] Nesterenko V F 1994 J. Phys. IV France 04 C8-729
[26] Nesterenko V F, Lazaridi A N and Sibiryakov E B 1995 J. Appl. Mech. Tech. Phys. 36 166
[27] Liu S W, Yang Y Y, Duan W S and Yang L 2015 Phys. Rev. E 92 013202
[28] Spence D A 1968 Proc. R. Soc. A 305 55
[29] Leblond H 2008 J. Phys. B 41 043001
[30] Zhang J, Yang Y, Xu Y X, Yang L, Qi X and Duan W S 2014 Phys. Plasmas 21 103706
[31] Kakutani T, Oni H, Taniuti T and Wei C C 1968 J. Phys. Soc. Jpn. 24 941
[32] Kakutani T, Oni H, Taniuti T and Wei C C 1968 J. Phys. Soc. Jpn. 24 1159
[33] Hilmi D 2002 Appl. Math. Comp. 132 643
[1] Exact explicit solitary wave and periodic wave solutions and their dynamical behaviors for the Schamel-Korteweg-de Vries equation
Bin He(何斌) and Qing Meng(蒙清). Chin. Phys. B, 2021, 30(6): 060201.
[2] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[3] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[4] Exact transverse solitary and periodic wave solutions in a coupled nonlinear inductor-capacitor network
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(9): 096301.
[5] Head-on collision between two solitary waves in a one-dimensional bead chain
Fu-Gang Wang(王扶刚), Yang-Yang Yang(杨阳阳), Juan-Fang Han(韩娟芳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(4): 044501.
[6] Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas
D M S Zaman, M Amina, P R Dip, A A Mamun. Chin. Phys. B, 2018, 27(4): 040402.
[7] Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays
Li-Yuan Ma(马立媛), Jia-Liang Ji(季佳梁), Zong-Wei Xu(徐宗玮), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2018, 27(3): 030201.
[8] Envelope solitary waves and their reflection and transmission due to impurities in a granular material
Wen-Qing Du(杜文青), Jian-An Sun(孙建安), Yang-Yang Yang(杨阳阳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(1): 014501.
[9] Simulations of solitary waves of RLW equation by exponential B-spline Galerkin method
Melis Zorsahin Gorgulu, Idris Dag, Dursun Irk. Chin. Phys. B, 2017, 26(8): 080202.
[10] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[11] Fully nonlinear (2+1)-dimensional displacement shallow water wave equation
Feng Wu(吴锋), Zheng Yao(姚征), Wanxie Zhong(钟万勰). Chin. Phys. B, 2017, 26(5): 054501.
[12] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[13] A new model for algebraic Rossby solitary waves in rotation fluid and its solution
Chen Yao-Deng (陈耀登), Yang Hong-Wei (杨红卫), Gao Yu-Fang (高玉芳), Yin Bao-Shu (尹宝树), Feng Xing-Ru (冯兴如). Chin. Phys. B, 2015, 24(9): 090205.
[14] Exponential B-spline collocation method for numerical solution of the generalized regularized long wave equation
Reza Mohammadi. Chin. Phys. B, 2015, 24(5): 050206.
[15] Complex dynamical behaviors of compact solitary waves in the perturbed mKdV equation
Yin Jiu-Li (殷久利), Xing Qian-Qian (邢倩倩), Tian Li-Xin (田立新). Chin. Phys. B, 2014, 23(8): 080201.
No Suggested Reading articles found!