Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 074214    DOI: 10.1088/1674-1056/27/7/074214

Controllable optical bistability in a three-mode optomechanical system with a membrane resonator

Jiakai Yan(闫甲楷), Xiaofei Zhu(朱小霏), Bin Chen(陈彬)
Department of Physics, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China;Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan 030024, China
Abstract  We study the optical bistability (OB) in a three-mode cavity optomechanical system, where an oscillating membrane of perfect reflection is inserted between two fixed mirrors of partial transmission. By investigating the behavior of steady state solutions, we find that the left and right cavities will exhibit the bistable behavior simultaneously in this optomechanical system by adjusting the left and right coupling fields. In addition, one can control the OB threshold and the width of the OB curve via adjusting the coupling strength, the detuning, and the decay rate. Moreover, we further illustrate the OB appearing in the cavity by the effective potential as a function of the position.
Keywords:  optical bistability      oscillating membrane      optomechanical system  
Received:  08 May 2018      Accepted manuscript online: 
PACS:  42.65.Pc (Optical bistability, multistability, and switching, including local field effects)  
  42.50.-p (Quantum optics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504258 and 11347181), the Natural Science Foundation of Shanxi Province, China (Grant No. 2014021011-1), and the Qualified Personnel Foundation of Taiyuan University of Technology, China (Grant No. tyutrc201245a).
Corresponding Authors:  Bin Chen     E-mail:

Cite this article: 

Jiakai Yan(闫甲楷), Xiaofei Zhu(朱小霏), Bin Chen(陈彬) Controllable optical bistability in a three-mode optomechanical system with a membrane resonator 2018 Chin. Phys. B 27 074214

[1] Aldana S, Bruder C and Nunnenkamp A 2014 Phys. Rev. A 90 063810
[2] Yan D, Wang Z H, Ren C N, Gao H, Li H and Wu J H 2015 Phys. Rev. A 91 023813
[3] Kazemi S H, Ghanbari S and Mahmoudi M 2016 Laser Phys. 26 055502
[4] Jiang C, Liu H X, Cui Y S and Li X W 2013 Phys. Rev. A 88 055801
[5] Kyriienko O, Liew T C H and Shelykh I A 2014 Phys. Rev. Lett. 112 076402
[6] Asadpour S H, Solookinejad G, Panahi M and Sangachin E A 2016 Chin. Phys. B 25 064201
[7] Yang S, Amri M A and Zubairy M S 2013 Phys. Rev. A 87 033836
[8] Zheng Q, Li S C, Zhang X P, You T J and Fu L B 2012 Chin. Phys. B 21 093702
[9] Xiong H, Si L G, Zheng A S, Yang X and Wu Y 2012 Phys. Rev. A 86 013815
[10] Xiong H, Si L G, Lü X Y, Yang X and Wu Y 2013 Opt. Lett. 38 353
[11] Chen B, Wang L D, Zhang J, Zhai A P and Xue H B 2016 Phys. Lett. A 798 380
[12] Wang L D, Yan J K, Zhu X F and Chen B 2017 Physica E 89 134
[13] Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[14] Kronwald A and Marquardt F 2013 Phys. Rev. Lett. 111 133601
[15] Yan X B, Gu K H, Fu C B, Cui C L and Wu J H 2014 Chin. Phys. B 23 114201
[16] Li L C, Rao S, Xu J and Hu X M 2015 Chin. Phys. B 24 054205
[17] Yan X B, Yang L, Tian X D, Liu Y M and Zhang Y 2014 Acta Phys. Sin. 63 204201 (in Chinese)
[18] Chan J, Mayer Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M and Painter O 2011 Nature 478 89
[19] Millen J, Fonseca P Z G, Mavrogordatos T, Monteiro T S and Barker P F 2015 Phys. Rev. Lett. 114 123602
[20] Peterson R W, Purdy T P, Kampe N S, Andrews R W, Yu P L, Lehnert K W and Regal C A 2016 Phys. Rev. Lett. 116 063601
[21] Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B 22 114213
[22] Hamedi H R, Mehmannavaz M R and Afshari H 2015 Chin. Phys. B 24 084211
[23] Ai J F, Chen A X and Deng L 2013 Chin. Phys. B 22 024209
[24] Kanamoto R and Meystre P 2010 Phys. Rev. Lett. 104 063601
[25] Li H, Sheng C X and Chen Q 2012 Chin. Phys. Lett. 29 054201
[26] Wu Y M, Chen G Q, Ma C Q, Xue S Z and Zhu Z W 2012 Chin. Phys. Lett. 29 037802
[27] Lorente R M, Martin A E, Roldan E, Staliunas K, Valcarcel G J and Silva F 2015 Phys. Rev. A 92 053858
[28] Kolpakov S, Silva F, Valcarcel G J, Roldan E and Staliunas K 2012 Phys. Rev. A 85 025805
[29] Melo N R, Wade C G, Sibalic N, Kondo J M, Adams C S and Weatherill K J 2016 Phys. Rev. A 93 063863
[30] Martin A E, Quesada M M, Taranenko V B, Roldan E and Valcarcel G J 2006 Phys. Rev. Lett. 97 093903
[31] Marino F, Giacomelli G and Barland S 2014 Phys. Rev. Lett. 112 103901
[32] Labouvie R, Santra B, Heun S and Ott H 2016 Phys. Rev. Lett. 116 235302
[33] Brennecke F, Ritter S, Donner T and Esslinger T 2008 Science 322 235
[34] Groblacher S, Hammerer K, Vanner M R and Aspelmeyer M 2009 Nature 460 724
[35] Agarwal G S 2011 Phys. Rev. A 83 023802
[36] Seok H, Buchmann L F, Wright E M and Meystre P 2013 Phys. Rev. A 88 063850
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[5] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[6] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[7] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[8] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[9] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[10] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[11] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[12] Nearly invariant boundary entanglement in optomechanical systems
Shi-Wei Cui(崔世威), Zhi-Jiao Deng(邓志姣), Chun-Wang Wu(吴春旺), and Qing-Xia Meng(孟庆霞). Chin. Phys. B, 2021, 30(11): 110311.
[13] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[14] The optical nonreciprocal response based on a four-mode optomechanical system
Jing Wang(王婧). Chin. Phys. B, 2020, 29(3): 034210.
[15] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
No Suggested Reading articles found!