ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen |
Yu-Dan Gou(苟于单)1, De-Xiang Zhang(张德翔)1, Yi-Jun Wang(王易君)1, Chang-Hua Zhang(张昌华)1, Ping Li(李萍)1, Xiang-Yuan Li(李象远)2 |
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 College of Chemical Engineering, Sichuan University, Chengdu 610065, China |
|
|
Abstract Concentration time-histories of H2O were measured behind reflected shock waves during hydrogen combustion. Experiments were conducted at temperatures of 1117-1282 K, the equivalence ratios of 0.5 and 0.25, and a pressure at 2 atm using a mixture of H2/O2 highly diluted with argon. H2O was monitored using tunable mid-infrared diode laser absorption at 2.55 μm (3920.09 cm-1). These time-histories provide kinetic targets to test and refine reaction mechanisms for hydrogen. Comparisons were made with the predictions of four detailed kinetic mechanisms published in the last four years. Such comparisons of H2O concentration profiles indicate that the AramcoMech 2.0 mechanism yields the best agreement with the experimental data, while CRECK, San Diego, and HP-Mech mechanisms show significantly poor predictions. Reaction pathway analysis for hydrogen oxidation indicates that the reaction H+OH+M=H2O+M is the key reaction for controlling the H2O formation by hydrogen oxidation. It is inferred that the discrepancy of the conversion percentage from H to H2O among these four mechanisms induces the difference of performance on H2O time-history predictions. This work demonstrates the potential of time-history measurement for validation of large reaction mechanisms.
|
Received: 30 January 2018
Revised: 15 March 2018
Accepted manuscript online:
|
PACS:
|
42.62.Fi
|
(Laser spectroscopy)
|
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
82.33.Vx
|
(Reactions in flames, combustion, and explosions)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB0202400 and 2017YFB0202401). |
Corresponding Authors:
Chang-Hua Zhang
E-mail: zhangchanghua@scu.edu.cn
|
Cite this article:
Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远) Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen 2018 Chin. Phys. B 27 074213
|
[1] |
Tang C L, Zhang Y J and Huang Z H 2014 Renew. Sust. Energ. Rev. 30 195
|
[2] |
Jain I P 2009 Int. J. Hydrogen Energy 34 7368
|
[3] |
Hong Z K, Davidson D F and Hanson R K 2011 Combust. Flame 158 633
|
[4] |
Konnov A A 2008 Combust. Flame 152 507
|
[5] |
Burke M, Chaos M, Ju Y G, Dryer F L and Klippenstein S J 2012 Int. J. Chem. Kinet. 44 444
|
[6] |
Li J, Zhao Z W, Kazakov A and Dryer F L 2004 Int. J. Chem. Kinet. 36 566
|
[7] |
Ó Conaire M, Curran H J, Simmie J M, Pitz W J and Westbrook C K 2004 Int. J. Chem. Kinet. 36 603
|
[8] |
Kéromnés A, Metcalfe W K, Heufer K A, Donohoe N, Das A K, Sung C J, Herzler J, Naumann C, Griebel P, Mathieu O, Krejci M C, Petersen E L, Pitz W J and Curran H J 2013 Combust. Flame 160 995
|
[9] |
Varga T, Nagy T, Olm C, Zsély I G, Pálvölgyi R, Valko E, Vincze G, Cserháti M, Curran H J and Turányi T 2015 Proc. Combust. Inst. 35 589
|
[10] |
Zhou C W, Li Y, O'Connor E, et al. 2016 Combust. Flame 167 353
|
[11] |
Ranzi E, Frassoldati A, Grana R, Cuoci A, Faravelli T, Kelley A P and Law C K 2012 Prog. Energy Combust. Sci. 38 468
|
[12] |
Zhao H, Fu J P, Haas F M and Ju Y G 1991 Combust. Flame 183 253
|
[13] |
Boivin P, Sánchez A L and Williams F A 2017 Combust. Flame 176 489
|
[14] |
Hu E J, Pan L, Gao Z H, Lu X, Meng X and Huang Z H 2016 Int. J. Hydrogen Energy 41 13261
|
[15] |
Davis S G, Joshi A V, Wang H and Egolfopoulos F 2005 Proc. Combust. Inst. 30 1283
|
[16] |
Smith G P, Golden D M, Frenklach M, Moriarty N W, Eiteneer B, Goldenberg M, Bowman C T, Hanson R K, Song S, Gardiner W C, Lissianski V V and Qin Z http://www.me.berkeley.edu/gri_mech[2010]
|
[17] |
Niemann U, Seshadri K and Williams F A 2013 Proc. Combust. Inst. 34 881
|
[18] |
Zamashchikov V V, AlekseevV A and Konnov A A 2014 Int. J. Hydrogen Energy 39 1874
|
[19] |
Hanson R K and Davidson D F 2014 Prog. Energy Combust. Sci. 44 103
|
[20] |
Zhang C, He J, Li Y, Li X and Li P 2015 Fuel 154 346
|
[21] |
Zhang C H, Li P, Guo J J and Li X Y 2012 Energy Fuels 26 1107
|
[22] |
Urzay J, Kseib N, Davidson D F, Iaccarino G and Hanson R K 2014 Combust. Flame 161 1
|
[23] |
Hong Z K, Farooq A, Barbour E A, Davidson D F and Hanson R K 2009 J. Phys. Chem. A 113 12919
|
[24] |
Gou Y D, Lu P F, He J N, Zhang C H, Li P and Li X Y 2018 Spectrosc. Spect. Anal. 38 176 (in Chinese)
|
[25] |
Xia H H, Kan R F, Liu J G, Xu Z Y and He Y B 2016 Chin. Phys. B 25 064205
|
[26] |
Rothman L S, Gordon I E, Babikov Y, et al. 2013 J. Quant. Spectrosc. Ra. 130 4
|
[27] |
ANSYS CHEMKIN 17.0 (15151), ANSYS Reaction Design:San Diego 2016
|
[28] |
Tekawade A, Kosiba G and Oehlschlaeger M A 2016 Combust. Flame 173 402
|
[29] |
Wang Q D, Fang Y M, Wang F and Li X Y 2013 Proc. Combust. Inst. 34 187
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|