Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 038104    DOI: 10.1088/1674-1056/26/3/038104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Carrier transport via V-shaped pits in InGaN/GaN MQW solar cells

Shitao Liu(刘诗涛)1, Zhijue Quan(全知觉)2, Li Wang(王立)1
1 School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China;
2 National Engineering Technology Research Center for LED on Si Substrate, Nanchang University, Nanchang 330047, China
Abstract  Carrier transport via the V-shaped pits (V-pits) in InGaN/GaN multiple-quantum-well (MQW) solar cells is numerically investigated. By simulations, it is found that the V-pits can act as effective escape paths for the photo-generated carriers. Due to the thin barrier thickness and low indium composition of the MQW on V-pit sidewall, the carriers entered the sidewall QWs can easily escape and contribute to the photocurrent. This forms a parallel escape route for the carries generated in the flat quantum wells. As the barrier thickness of the flat MQW increases, more carriers would transport via the V-pits. Furthermore, it is found that the V-pits may reduce the recombination losses of carriers due to their screening effect to the dislocations. These discoveries are not only helpful for understanding the carrier transport mechanism in the InGaN/GaN MQW, but also important in design of the structure of solar cells.
Keywords:  V-shaped pits      InGaN/GaN multiple-quantum-well      solar cells      carrier transport  
Received:  19 September 2016      Revised:  23 November 2016      Accepted manuscript online: 
PACS:  81.07.St (Quantum wells)  
  81.05.Ea (III-V semiconductors)  
  88.40.jm (Thin film III-V and II-VI based solar cells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61564007 and 11364034) and the Sci-Tech Support Plan of Jiangxi Province, China (Grant No. 20141BBE50035).
Corresponding Authors:  Li Wang     E-mail:  wl@ncu.edu.cn

Cite this article: 

Shitao Liu(刘诗涛), Zhijue Quan(全知觉), Li Wang(王立) Carrier transport via V-shaped pits in InGaN/GaN MQW solar cells 2017 Chin. Phys. B 26 038104

[1] Wu J 2009 J. Appl. Phys. 106 011101
[2] Bhuiyan A G, Sugita K, Hashimoto A and Yamamoto A 2012 IEEE J. Photovolt. 2 276
[3] Holec D, Zhang Y, Sridhara Rao D V, Kappers M J, McAleese C and Humphreys C J 2008 J. Appl. Phys. 104 123514
[4] Jani O, Ferguson I, Honsberg C and Kurtz S 2007 Appl. Phys. Lett. 91 132117
[5] Dahal R, Pantha B, Li J, Lin J Y and Jiang H X 2009 Appl. Phys. Lett. 94 063505
[6] Lai K Y, Lin G J, Lai Y L, Chen Y F and He J H 2010 Appl. Phys. Lett. 96 081103
[7] Valduezafelip S, Mukhtarova A, Grenet L, Bougerol C, Durand C, Eymery J and Monroy E 2014 Appl. Phys. Express 7 032301
[8] Choi S, Shim J, Kim D, Jeong H, Jho Y, Song Y and Lee D 2013 Appl. Phys. Lett. 103 033901
[9] Redaelli L, Mukhtarova A, Valduezafelip S, Ajay A, Bougerol C, Himwas C, Faurevincent J, Durand C, Eymery J and Monroy E 2014 Appl. Phys. Lett. 105 131105
[10] Dahal R, Li J, Aryal K, Lin J Y and H. X. Jiang 2010 Appl. Phys. Lett. 97 073115
[11] Chen X, Zhao B J, Ren Z W, Tong J H, Wang X F, Zhuo X J, Zhang J, Li D W, Yi H X and Li S T 2013 Chin. Phys. B 22 078402
[12] Liang M M, Weng G E, Zhang J Y, Cai X M, LX Q, Ying L Y and Zhang B P 2014 Chin. Phys. B 23 054211
[13] Wu H Y, Ma Z G, Jiang Y, Wang L, Yang H J, Li Y F, Zuo P, Jia H Q, Wang W X, Zhou J M, Liu W M and Chen H 2016 Chin. Phys. B 25 0117803
[14] Rajabi K, Cao W Y, Shen T H, Ji Q B, He J, Yang W, Li L, Li D, Wang Q and Hu X D 2015 Chin. Phys. Lett. 32 027802
[15] Lang J R, Young N G, Farrell R M, Wu Y R and Speck J S 2012 Appl. Phys. Lett. 101 181105
[16] Hangleiter A, Hitzel F, Netzel C, Fuhrmann D, Rossow U, Ade G and Hinze P 2005 Phys. Rev. Lett. 95 127402
[17] Quan Z, Wang L, Zheng C, Liu J and Jiang F 2014 J. Appl. Phys. 116 183107
[18] Kim J, Cho Y H, Ko D S, Li X S, Won J Y, Lee E, Park S H, Kim J Y and Kim S 2014 Opt. Express 22 A857
[19] Li Y, Yun F, Su X, Liu S, Ding W and Hou X 2014 J. Appl. Phys. 116 123101
[20] ATLAS by SILVACO Inc., Santa Clara, CA, America
[21] Fiorentini V and Bernardini F 1999 Phys. Rev. B 60 8849
[22] Sala F D, Carlo A D, Lugli P, Bernardini F, Fiorentini V, Scholz R and Jancu J 1999 Appl. Phys. Lett. 74 2002
[23] Zhang H, Miller E J, Yu E T, Poblenz C and Speck J S 2004 Appl. Phys. Lett. 84 4644
[24] Xia C S, Li ZM S and Sheng Y 2013 Appl. Phys. Lett. 103 233505
[25] Tomiya S, Kanitani Y, Tanaka S, Ohkubo T and Hono K 2011 Appl. Phys. Lett. 98 181904
[26] Wu X, Liu J, Quan Z, Xiong C, Zheng C, Zhang J, Mao Q and Jiang F 2014 Appl. Phys. Lett. 104 221101
[27] Vurgaftman I, Meyer J R and Rammohan L R 2001 J. Appl. Phys. 89 5815
[28] Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H and Schaff W J 2002 Appl. Phys. Lett. 80 4741
[29] Wang K, Lian C, Su N, Jena D and Timler J 2007 Appl. Phys. Lett. 91 232117
[30] Zhang X, Wang X, Xiao H, Yang C, Ran J, Wang C, Hou Q and Li J 2007 J. Phys. D 40 7335
[31] Wierer J J, Koleske D D and Lee S R 2012 Appl. Phys. Lett. 100 111119
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[3] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[4] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[5] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[6] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[7] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[8] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[9] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
[10] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[11] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[12] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[13] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[14] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[15] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
No Suggested Reading articles found!