Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018203    DOI: 10.1088/1674-1056/25/1/018203
Special Issue: TOPICAL REVIEW — Fundamental physics research in lithium batteries
TOPICAL REVIEW—Fundamental physics research in lithium batteries Prev   Next  

Size effects in lithium ion batteries

Hu-Rong Yao(姚胡蓉)1,2, Ya-Xia Yin(殷雅侠)1, Yu-Guo Guo (郭玉国)1,2,3
1. CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Shandong Wina Green Power Co. Ltd., Shouguang 262705, China
Abstract  

Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted.

Keywords:  lithium ion batteries      size effects      experiment      calculation  
Received:  11 May 2015      Revised:  07 July 2015      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51225204 and 21303222), the Shandong Taishan Scholarship, China, the Ministry of Science and Technology, China (Grant No. 2012CB932900), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010000).

Corresponding Authors:  Yu-Guo Guo     E-mail:  ygguo@iccas.ac.cn

Cite this article: 

Hu-Rong Yao(姚胡蓉), Ya-Xia Yin(殷雅侠), Yu-Guo Guo (郭玉国) Size effects in lithium ion batteries 2016 Chin. Phys. B 25 018203

[1] Maier J 2005 Nat. Mater. 4 805
[2] Wu X L, Jiang L Y, Cao F F, Guo Y G and Wan L J 2009 Adv. Mater. 21 2710
[3] Wu X L, Guo Y G, Su J, Xiong J W, Zhang Y L and Wan L J 2013 Advanced Energy Materials 3 1155
[4] Yang J, Han X, Zhang X, Cheng F and Chen J 2013 Nano Research 6 679
[5] Hu Y S, Kienle L, Guo Y G and Maier J 2006 Adv. Mater. 18 1421
[6] Feng G X, Li L F, Liu J Y, Liu N, Li H, Yang X Q, Huang X J, Chen L Q, Nam K W and Yoon W S 2009 Journal of Materials Chemistry 19 2993
[7] Yu X Y, Bin Wu H, Yu L, Ma F X and Lou X W 2015 Angewandte Chemie-International Edition 54 4001
[8] Pfanzelt M, Kubiak P, Fleischhammer M and Wohlfahrt-Mehrens M 2011 Journal of Power Sources 196 6815
[9] Ouyang C Y, Zhong Z Y and Lei M S 2007 Electrochemistry Communications 9 1107
[10] Prakash A S, Manikandan P, Ramesha K, Sathiya M, Tarascon J M and Shukla A K 2010 Chemistry of Materials 22 2857
[11] Zhang B, Liu Y, Huang Z, Oh S, Yu Y, Mai Y W and Kim J K 2012 Journal of Materials Chemistry 22 12133
[12] Zhao Y, Peng L, Liu B and Yu G 2014 Nano. Lett. 14 2849
[13] Malik R, Burch D, Bazant M and Ceder G 2010 Nano. Lett. 10 4123
[14] Liu N, Li H, Wang Z X, Huang X J and Chen L Q 2006 Electrochemical and Solid State Letters 9 A328
[15] Okubo M, Hosono E, Kim J, Enomoto M, Kojima N, Kudo T, Zhou H and Honma I 2007 J. Am. Chem. Soc. 129 7444
[16] Zhang W M, Wu X L, Hu J S, Guo Y G and Wan L J 2008 Advanced Functional Materials 18 3941
[17] Guo Y G, Hu Y S, Sigle W and Maier J 2007 Adv. Mater. 19 2087
[18] Wu L J, Wiesmann H J, Moodenbaugh A R, Klie R F, Zhu Y M, Welch D O and Suenaga M 2004 Phys. Rev. B 69 125415
[19] Tsunekawa S, Ito S, Mori T, Ishikawa K, Li Z Q and Kawazoe Y 2000 Phys. Rev. B 62 3065
[20] Balaya P and Maier J 2010 Physical Chemistry Chemical Physics 12 215
[21] Gibot P, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S, Tarascon J M and Masquelier C 2008 Nat. Mater. 7 741
[22] Zhu C, Mu X, Popovic J, Weichert K, van Aken P A, Yu Y and Maier J 2014 Nano. Lett. 14 5342
[23] Schimanke G and Martin M 2000 Solid State Ionics 136 1235
[24] Zhu C, Gu L, Suo L, Popovic J, Li H, Ikuhara Y and Maier J 2014 Advanced Functional Materials 24 312
[25] Sun Y, Lu X, Xiao R, Li H and Huang X 2012 Chemistry of Materials 24 4693
[26] Malik R, Zhou F and Ceder G 2011 Nat. Mater. 10 587
[27] Kobayashi G, Nishimura S i, Park M S, Kanno R, Yashima M, Ida T and Yamada A 2009 Advanced Functional Materials 19 395
[28] Li H, Huang X J, Chen L Q, Wu Z G and Liang Y 1999 Electrochemical and Solid State Letters 2 547
[29] Liu B, Soares P, Checkles C, Zhao Y and Yu G 2013 Nano. Lett. 13 3414
[30] Piper D M, Travis J J, Young M, Son S B, Kim S C, Oh K H, George S M, Ban C and Lee S H 2014 Adv. Mater. 26 1596
[31] Ko M, Chae S, Jeong S, Oh P and Cho J 2014 Acs Nano 8 8591
[32] Ma H, Ji W Q, Yang X J, Tao Z L and Chen J 2009 Science in China. Series B, Chemistry 39 918
[33] Chen J, Xu L N, Li W Y and Gou X L 2005 Adv. Mater. 17 582
[34] Denis S, Baudrin E, Touboul M and Tarascon J M 1997 Journal of the Electrochemical Society 144 4099
[35] Li H, Balaya P and Maier J 2004 Journal of the Electrochemical Society 151 A1878
[36] Zhukovskii Y F, Balaya P, Kotomin E A and Maier J 2006 Phys. Rev. Lett. 96
[37] Bekaert E, Balaya P, Murugavel S, Maier J and Menetrier M 2009 Chemistry of Materials 21 856
[38] Liu Z, Fu W, Payzant E A, Yu X, Wu Z, Dudney N J, Kiggans J, Hong K, Rondinone A J and Liang C 2013 J. Am. Chem. Soc. 135 975
[39] Bhattacharyya A J and Maier J 2004 Adv. Mater. 16 811
[40] Whiteside A, Fisher C A J, Parker S C and Islam M S 2014 Physical Chemistry Chemical Physics 16 21788
[41] Andreev Y G, Panchmatia P M, Liu Z, Parker S C, Islam M S and Bruce P G 2014 J. Am. Chem. Soc. 136 6306
[42] Barnard A S and Zapol P 2004 Journal of Physical Chemistry B 108 18435
[43] Moriguchi K, Munetoh S, Abe M, Yonemura M, Kamei K, Shintani A, Maehara Y, Omaru A and Nagamine M 2000 J. Appl. Phys. 88 6369
[44] Kramer D and Ceder G 2009 Chemistry of Materials 21 3799
[45] Seriani N 2009 Nanotechnology 20
[46] Catlow C R A, Bromley S T, Hamad S, Mora-Fonz M, Sokol A A and Woodley S M 2010 Physical Chemistry Chemical Physics 12 786
[47] Qian D, Hinuma Y, Chen H, Du L S, Carroll K J, Ceder G, Grey C P and Meng Y S 2012 J. Am. Chem. Soc. 134 6096
[48] Ouyang C Y, Sljivancanin Z and Baldereschi A 2010 Journal of Chemical Physics 133
[49] Ganapathy S and Wagemaker M 2012 Acs Nano 6 8702
[50] Tompsett D A, Parker S C, Bruce P G and Islam M S 2013 Chemistry of Materials 25 536
[51] Park S B, Park C K, Hwang J T, Cho W I and Jang H 2011 Metals and Materials International 17 1017
[52] Suo L, Han W, Lu X, Gu L, Hu Y S, Li H, Chen D, Chen L, Tsukimoto S and Ikuhara Y 2012 Physical Chemistry Chemical Physics 14 5363
[53] Zhu Y, Wang J W, Liu Y, Liu X, Kushima A, Liu Y, Xu Y, Mao S X, Li J, Wang C and Huang J Y 2013 Adv. Mater. 25 5461
[54] Abdellahi A, Akyildiz O, Malik R, Thornton K and Ceder G 2014 Journal of Materials Chemistry A 2 15437
[55] Naoi K, Naoi W, Aoyagi S, Miyamoto J I and Kamino T 2013 Accounts of Chemical Research 46 1075
[56] Zhang W D, Xu B and Jiang L C 2010 Journal of Materials Chemistry 20 6383
[57] Cao Y, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf L V, Yang Z and Liu J 2011 Adv. Mater. 23 3155
[58] Pan H, Lu X, Yu X, Hu Y S, Li H, Yang X Q and Chen L 2013 Advanced Energy Materials 3 1186
[59] Kim J, Seo D H, Kim H, Park I, Yoo J K, Jung S K, Park Y U, Goddard W A III and Kang K 2015 Energy & Environmental Science 8 540
[60] Wu N, Lyu Y C, Xiao R J, Yu X, Yin Y X, Yang X Q, Li H, Gu L and Guo Y G 2014 Npg Asia Materials 6 e120
[61] Wu N, Yang Z Z, Yao H R, Yin Y X, Gu L and Guo Y G 2015 Angewandte Chemie-International Edition 54 5757
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[10] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[11] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[12] Effect of conical intersection of benzene on non-adiabatic dynamics
Duo-Duo Li(李多多) and Song Zhang(张嵩). Chin. Phys. B, 2022, 31(8): 083103.
[13] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
No Suggested Reading articles found!