Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 098103    DOI: 10.1088/1674-1056/22/9/098103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Structural and optical properties of a NaCl single crystal doped with CuO nanocrystals

S. Addalaa, L. Bouhdjera, A. Chalab, A. Bouhdjarb, O. Halimia, B. Boudinea, M. Sebaisa
a Laboratory of Crystallography, Department of Physics, Mentouri University of Constantine, Constantine 25000, Algeria;
b Laboratory of Applied Chemistry, Department of Physics, Mohamed Khaider University of Biskra, Biskra 07000, Algeria
Abstract  A cupric oxide (CuO) nanocrystal-doped NaCl single crystal and a pure NaCl single crystal are grown by using the Czochralski (Cz) method. A number of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, optical absorption in the UV-visible range, and photoluminescence (PL) spectroscopy are used to characterize the obtained NaCl and NaCl:CuO crystals. It is observed that the average radius of CuO crystallites in NaCl:CuO crystal is about 29.87 nm, as derived from the XRD data analysis. Moreover, FT-IR and Raman spectroscopy results confirm the existence of the monoclinic CuO phase in NaCl crystal. UV-visible absorption measurements indicate that the band gap of the NaCl:CuO crystal is 434 nm (2.85 eV), and it shows a significant amount of blue-shift (ΔEg=1 eV ) in the band gap energy of CuO, which is due to the quantum confinement effect exerted by the CuO nanocrystals. The PL spectrum of the NaCl:CuO shows a broad emission band centred at around 438 nm, which is consistent with the absorption measurement.
Keywords:  NaCl single crystal      CuO nanocrystals      Raman spectroscopy      photoluminescence  
Received:  22 July 2012      Revised:  04 March 2013      Accepted manuscript online: 
PACS:  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the Crystallography Laboratory of the University of Constantine, Algeria.
Corresponding Authors:  L. Bouhdjer     E-mail:  bouhdjerlazhar@gmail.com

Cite this article: 

S. Addala, L. Bouhdjer, A. Chala, A. Bouhdjar, O. Halimi, B. Boudine, M. Sebais Structural and optical properties of a NaCl single crystal doped with CuO nanocrystals 2013 Chin. Phys. B 22 098103

[1] Frietsch M, Zudock F, Goschnick J and Bruns M 2000 Sensor. Actuators. B 65 379
[2] Maruyama T 1998 Sol. Energy Mater. Solar Cells 56 85
[3] Jiang Y, Decker S, Mohs C and Klabunde K J 1998 Catalysis 180 24
[4] Ao B, Kummerl L and Haarer K 1995 Adv. Mater. 7 495
[5] Muller K H 2001 High-Tc Supperconductors and Related Materials (Dordrecht: Kluwer Academic)
[6] Chen J, Deng S, Xu N, Zhang W, Wen X and Yang S 2003 Appl. Phys. Lett. 83 746
[7] Yeon S C, Sung W Y, Kim W J, Lee S M, Lee H Y, Kim Y H and Vac J 2006 Sci. Technol. B 24 940
[8] Hsieh C T, Chen J M, Lin H H and Shih H C 2003 Appl. Phys. Lett. 83 3383
[9] Zhu Y W, Yu T, Cheong F C, Xu X J, Lim C T, Tan V B C, Thong J T L and Sow C H 2005 Nanotechnology 16 88
[10] Fröhlich D, Haselhoff M and Reimann K 1995 Solid State Commun. 94 189
[11] Haselhoff M and Weber H J 1998 Phys. Rev. B 58 5052
[12] Vogelsang H, Husberg O, Köhler U and Von der Osten W 2000 Phy. Rev. B 61 1874
[13] Baranov P G, Romanov N G, Khramtsov V A and Vikhnin V S 2001 J. Phys.: Condens. Matter 13 2651
[14] Halimi O, Boudine B, Sebais M, Challouche A, Mouras R and Boudrioua A 2003 Mater. Sci. Eng. C 23 1111
[15] Boudine B, Sebais M, Halimi O, Alliouche H, Boudrioua A and Mouras R 2004 Catal. Today 89 293
[16] Bensouici A, Plaza J L, Diéguez E, Halimi O, Boudine B, Addala S, Guerbous L and Sebais M 2009 Luminescence 129 948
[17] Taketashi K and Takeshi H 2012 Luminescence 132 513
[18] Sung M K, Gwang S K and Sang Y L 2008 Mater. Lett. 62 4354
[19] Daniel D J, Ramasamy P, Madhusoodanan U and Bhagavannarayana G 2012 J. Cryst. Growth 353 95
[20] Seung-Suk S and Kyung-Woo Y 2005 J. Cryst. Growth 275 e249
[21] Cullity B D 1978 Elements of X-Ray Diffraction (2nd edn.) (Reading, MA: Addision-Wesley) p. 102
[22] Zhu J, Chan H, Liu H, Yang X, Lu L and Wang X 2004 Mater. Sci. Eng. A 384 172
[23] Yoshikawa M, Obata Y and Maegawa M 1995 Appl. Phys. Lett. 67 694
[24] Jian Z, Buscher H, Falter C, Ludwig W, Zhang K and Xie X 1996 Appl. Phys. Lett. 69 200
[25] Goldstein H F, Kim D S, Yu P Y and Bourne L C 1990 Phys. Rev. B 41 7192
[26] Xu J F, Ji W, Shen Z X, Tang S H, Ye X R, Jia D Z and Xin X Q 1999 Solid State Chem. 147 516
[27] Wang Z, Pischedda V, Saxena S K and Lazor P 2002 Solid State Commun. 121 275
[28] Dar M A, Ahsanulhaq Q, Kim Y S, Sohn J M, Kim W B and Shin H S 2009 Appl. Surf. Sci. 255 6279
[29] Balamurugan B and Mehta B R 2001 Thin Solid Films 396 90
[30] Dar M A, Kim Y S, Kim W B, Sohn J M and Shin H S 2008 Appl. Surf. Sci. 254 7477
[31] Othmani A, Plenet J C, Berstein E and Bouvier C 1994 J. Cryst. Growth 144 141
[32] Maji S K, Mukherjee N, Mondal A, Adhikary B and Karmakar B 2010 Solid State Chem. 183 1900
[33] Santra K, Sarka C K, Mukherjee M K and Cosh B 1992 Thin Solid Films 213 226
[34] Abdul Momin M, Roksana P, Jalal Uddin M, Arifuzzaman Khan G M and Momtazul Islam 2010 J. Bangladesh Electron. 10 57
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[3] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[4] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[5] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[6] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[7] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[8] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[9] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[10] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[11] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[12] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[13] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[14] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[15] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
No Suggested Reading articles found!