Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 040306    DOI: 10.1088/1674-1056/20/4/040306
GENERAL Prev   Next  

Efficient quantum secret sharing scheme with two-particle entangled states

Zhu Zhen-Chao(朱珍超)a)b),Zhang Yu-Qing(张玉清)b),and Fu An-Min(付安民)a)b)
a Key Lab of Computer Networks and Information Security of Ministry of Education, Xidian University, Xi'an 710071, ChinaNational Computer Network Intrusion Protection Center, Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 3148) and Zhang et al. (2009 Chin. Phys. B 18 2149) respectively. The theoretical efficiency for qubits of the new protocol is improved from 50% to approaching 100%. All the entangled states can be used for generating the private key except those used for the eavesdropping check. The validity of a probable attack called opaque cheat attack to this kind of protocols is considered in the paper for the first time.
Keywords:  quantum secret sharing      quantum entanglement      Bell state nonorthogonal base  
Received:  01 July 2010      Revised:  30 November 2010      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 90718007) and the National Natural Science Foundation of China (Grant Nos. 60773135 and 60970140).

Cite this article: 

Zhu Zhen-Chao(朱珍超), Zhang Yu-Qing(张玉清), and Fu An-Min(付安民) Efficient quantum secret sharing scheme with two-particle entangled states 2011 Chin. Phys. B 20 040306

[1] Shamir A 1979 Comm. ACM. 22 612
[2] Shor P W 1994 Proc. 35th Annual Symp. on Foundations of Computer Science (New York: IEEE) p. 124
[3] Hillery M, Buvzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[4] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
[5] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[6] Bandyopadhyay S 2000 Phys. Rev. A 62 012308
[7] Tittel W, Zbinden H and Gisin N 2001 Phys. Rev. A 63 042301
[8] Karimipour V, Bahraminasab A and Bagherinezhad S 2002 Phys. Rev. A 65 042320
[9] Guo G P and Guo G C 2003 Phys. Lett. A 310 247
[10] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[11] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[12] Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
[13] Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K 2004 Phys. Rev. Lett. 92 177903
[14] Deng F G, Zhou H Y and Long G L 2005 Phys. Lett. A 337 329
[15] Zhang Z J, Li Y and Man Z X 2005 Phys. Rev. A 71 044301
[16] Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302
[17] Yan F L and Gao T 2005 Phys. Rev. A 72 012304
[18] Zhang Z J and Man Z X 2005 Phys. Rev. A 72 022303
[19] Li C Y, Zhou H Y, Wang Y and Deng F G 2005 Chin. Phys. Lett. 22 1049
[20] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2005 Phys. Rev. A 72 044301
[21] Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
[22] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[23] Li X H, Deng F G and Zhou H Y 2007 Chin. Phys. Lett. 24 1151
[24] Sun Y, Du J Z, Qin S J, Wen Q Y and Zhu F C 2008 Acta Phys. Sin. 57 4689 (in Chinese)
[25] Yang Y G and Wen Q Y 2009 Phys. Lett. A 373 396
[26] Yu Y F and Zhang Z M 2009 Chin. Phys. B 18 1342
[27] Song T T, Zhang J, Gao F, Wen Q Y and Zhu F C 2009 Chin. Phys. B 18 1333
[28] Wang C and Zhang Y 2009 Chin. Phys. B 18 3238
[29] Gu B, Li C Q, Xu F and Chen Y L 2009 Chin. Phys. B 18 4690
[30] Yang Y G, Cao W F and Wen Q Y 2010 Chin. Phys. B 19 050306
[31] Liu W T, Liang L M, Li C Z and Yuan J M 2006 Chin. Phys. Lett. 23 3148
[32] Zhang B B, Wang D Q, Huang S S and Liu Y 2009 Chin. Phys. B 18 2149
[33] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[34] Cabello A 2000 Phys. Rev. Lett. 85 5635
[35] Cai Q Y 2006 Phys. Lett. A 351 23
[36] Deng F G, Zhou P, Li X H, Li C Y and Zhou H Y 2005 it arXiv:quant-ph/0508168
[37] Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
[38] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[39] Gao F, Qin S J, Guo F Z and Wen Q Y 2010 arXiv: quant-ph/1009.2545
[40] Deng F G, Li X H and Zhou H Y 2007 arXiv: quant-ph/07050279
[41] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing (New York: IEEE) p. 175
[42] Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z and Pan J W 2010 Nat. Photonics 4 376
[43] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Commun. 1 7
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[4] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[5] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[6] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[9] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[10] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[11] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[12] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[13] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[14] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[15] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
No Suggested Reading articles found!