Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 010703    DOI: 10.1088/1674-1056/19/1/010703
GENERAL Prev   Next  

A new method for high-energy pulsed Gamma measurement within intense background x-rays

Tan Xin-Jian(谭新建)a)b), Ouyang Xiao-Ping(欧阳晓平) a)b)†, Wang Qun-Shu(王群书) a)b), Song Zhao-Hui(宋朝晖)b), Kang Ke-Jun(康克军) a), and Xia Liang-Bin(夏良斌)b)
a Department of Engineering Physics, Tsinghua University, Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, China; b Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  The accelerator-generating 6.13 MeV pulsed Gamma by 19F(p, $\alpha\gamma$)160 reaction usually synchronizes with an intense bremsstrahlung x-ray which has a maximum energy of 1~MeV. This paper proposes a new method, named the scattering and absorbing method, to diagnose the 6.13 MeV Gamma. This method includes two parts: the detector and a scatterer placed in front of the detector. The detector converts the Gamma to electrons and then collects the electrons by a scintillator. In order to restrain the interference of the low-energy background, the scintillator collects the electrons at a small angle. The scintillator is wrapped with electro-absorbing material to absorb the low-energy electrons generated by background x-rays. The theoretical sensitivity ratio of 6.13 MeV Gamma to 1 MeV x-rays is greater than 150. The scatterer is a pretreatment tool to scatter some background x-rays away from the radial beam before they enter the detector. By varying the length, the scatterer can reduce the background x-rays to an acceptable level for the detector.
Keywords:  high energy pulsed Gamma      background      scattering      absorbing  
Received:  03 May 2009      Revised:  09 June 2009      Accepted manuscript online: 
PACS:  07.85.Fv (X- and γ-ray sources, mirrors, gratings, and detectors)  
  23.20.Lv (γ-transitions and level energies)  
  25.40.Lw (Radiative capture)  
  27.20.+n (6 ≤ A ≤ 19)  
  29.40.Mc (Scintillation detectors)  

Cite this article: 

Tan Xin-Jian(谭新建), Ouyang Xiao-Ping(欧阳晓平), Wang Qun-Shu(王群书), Song Zhao-Hui(宋朝晖), Kang Ke-Jun(康克军), and Xia Liang-Bin(夏良斌) A new method for high-energy pulsed Gamma measurement within intense background x-rays 2010 Chin. Phys. B 19 010703

[1] Xia L B, Ouyang X P, Wang Q S, Kang K J and Tan X J 2008 Chin. Phys. B 17 4466
[2] John E B, Joseph S L, Peter B L, Joseph M M, James W T and Carlton S Y 1983 LA-UR-83-1864
[3] Yang H L and Qiu A C 2004 Nuclear Techniques 27 188 (in Chinese)
[4] Berggren R R, Caldwell S E, Faulkner J R, Lerche R A, Mack J M, Moy K J, Oertel J A and Young C S 2001 Rev. Sci. Instrum. 72 873
[5] Ye Y Y, Chen H D, He X J, Teng J T, Zhang C F, Feng J N, Chen X D and Deng F S 1996 Atomic Energy Science and Technology 30 127 (in Chinese)
[6] Glenn F K 1999 Radiation Detection and Measurement (New York: John Wiley & Sons, Inc.) p51
[7] Xie Y G and Chen C 2003 Particle Detector and Data Acquisition (Beijing: Science) p23 (in Chinese)
[8] Agostinelli S 2003 Nucl. Instrum. Methods A 506 250
[9] Guo Q, Xu R K and Lee Z H 2004 Acta Phys. Sin. 53 1334 (in Chinese)
[10] Song Z H, Ruan X C, Dai Q S and Wang K L 2005 High Power Laser and Particle Beams 17 453 (in Chinese)
[11] Briesmeister J F 2003 MCNP-A General Monte Carlo N-particle Transport Code, Version 5 (Alamos: National Laboratory)
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[4] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[5] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[6] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[7] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[10] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[11] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[12] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[13] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[14] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[15] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
No Suggested Reading articles found!