Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 012801    DOI: 10.1088/1674-1056/19/1/012801
NUCLEAR PHYSICS Prev   Next  

Pulsed ion beam-assisted carburizing of titanium in methane discharge

M. Shafiqa), M. Hassanb)†, K. Shahzada), A. Qayyumc), S. Ahmadc), R. S. Rawatd), and M. Zakaullaha)
a Department of Physics, Quaid-i-Azam University, 45320 Islamabad, Pakistan; b Department of Physics, GC University, 54000 Lahore, Pakistan; c National Tokamak Fusion Program, P O Box 3329 Islamabad, Pakistan; d Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, NIE BLK7, 1 Nanyang Walk, Singapore 637616, Singapore
Abstract  The carburizing of titanium (Ti) is accomplished by utilizing energetic ion pulses of a 1.5 kJ Mather type dense plasma focus (DPF) device operated in methane discharge. X-ray diffraction (XRD) analysis confirms the deposition of polycrystalline titanium carbide (TiC). The samples carburized at lower axial and angular positions show an improved texture for a typical (200)TiC plane. The Williamson--Hall method is employed to estimate average crystallite size and microstrains in the carburized Ti surface. Crystallite size is found to vary from ~50 to 100 nm, depending on the deposition parameters. Microstrains vary with the sample position and hence ion flux, and are converted from tensile to compressive by increasing the flux. The carburizing of Ti is confirmed by two major doublets extending from 300 to 390 cm-1 and from 560 to 620 cm-1 corresponding to acoustic and optical active modes in Raman spectra, respectively. Analyses by scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) have provided qualitative and quantitative profiles of the carburized surface. The Vickers microhardness of Ti is significantly improved after carburizing.
Keywords:  carbide      plasma focus      microstructure      surface morphology  
Received:  12 May 2009      Revised:  13 June 2009      Accepted manuscript online: 
PACS:  81.65.Lp (Surface hardening: nitridation, carburization, carbonitridation ?)  
  52.59.Hq (Dense plasma focus)  
  62.20.Qp (Friction, tribology, and hardness)  
  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
  78.30.Hv (Other nonmetallic inorganics)  
  81.40.Np (Fatigue, corrosion fatigue, embrittlement, cracking, fracture, and failure)  
Fund: Project partially supported by the HEC research project at QAU Islamabad. One of the authors (K. Shahzad) is grateful to the NESCOM for providing financial support for his M. Phil studies.

Cite this article: 

M. Shafiq, M. Hassan, K. Shahzad, A. Qayyum, S. Ahmad, R. S. Rawat, and M. Zakaullah Pulsed ion beam-assisted carburizing of titanium in methane discharge 2010 Chin. Phys. B 19 012801

[1] Ahmad S, Hussain S S, Sadiq M, Shafiq M, Waheed A and Zakaullah M 2006 Plasma Phys. Control Fusion 48 745
[2] Ahmad S, Sadiq M, Shafiq M, Waheed A, Lee P and Zakaullah M 2006 Plasma Sources Sci. Technol. 15 314
[3] Takao K, Honda T, Kitamura I and Masugata K 2003 Plasma Sources Sci. Technol. 12 407
[4] Hassan M, Qayyum A, Ahmad R, Murtaza G and Zakaullah M 2007 J. Phys. D: Appl. Phys. 40 769
[5] Lue J T, Yeh C K and Kuo Y Y 1983 IEEE Electron Device Lett. 4 457
[6] Hassan M, Rawat R S, Lee P, Hassan SM, Qayyum A, Ahmad R, Murtaza G and Zakaullah M 2008 Appl. Phys. A 90 669
[7] Rawat R S, Aggarwal V, Hassan M, Lee P, Springham S V, Tan T L and Lee S 2008 Appl. Surf. Sci. 255 2932
[8] Rawat R S, Srivastava M P, Tandon S and Mansingh A 1993 Phys. Rev. B 47 4858
[9] Gupta R and Srivastava M P 2004 Plasma Sources Sci. Technol. 13 371
[10] Khan I A, Hassan M, Ahmad R, Qayyum A, Murtaza G, Zakaullah M and Rawat R S 2008 Thin Solid Films 516 8255
[11] Hassan M, Ahmad R, Qayyum A, Murtaza G, Waheed A and Zakaullah M 2006 Vacuum 81 291
[12] Sadowski M J, Gribkov V A, Kubes P, Malinowski K, Skladnik-Sadowska E, Scholz M, Tsarenko A and Zebrowski J 2006 Phys. Scr. T 123 66
[13] Liu Z G, Guo J T, Ye L L, Li G S and Hu Z Q 1994 Appl. Phys. Lett. 65 2666
[14] Brauer G, Anwand W, Nicht E M, Coleman P G, Knights A P, Schut H, Kogel G and Wagner N 1995 J. Phys. Cond. Matt. 7 9091
[15] Sheats J R 1997 Science 277 191
[16] Maiya P S, Erck R A and Moon B M 1998 Surf. Coat. Technol. 102 218
[17] Besmann T M, Sinton D P, Lowden R A and Lee W Y In: Weimer A W (ed), 1997 Carbide, Nitride and Boride Materials Synthesis and Processing (London: Chapman & Hall) Ch.~22
[18] Randhawa H 1987 Thin Solid Films 153] 209
[19] Sundgren J E, Johansson B O, Karlsson S E and Hentzell H T G 1983 Thin Solid Films 105 367
[20] Lowndes D H, Geohegan D B, Puretzky A A, Norton D P and Rouleau C M 1996 Science 273 898
[21] Rawat R S, Lee P, White T, Ying L and Lee S 2001 Surf. Coat. Technol. 138 159
[22] Comisar G G 1969 Phys. Fluids 12 1000
[23] Greene J E, Sundgren J E, Hultman L, Petrov I and Bergstrom D B 1995 Appl. Phys. Lett. 67 2928
[24] Junhua X, Geyang L and Mingyuan G 2000 Thin Solid Films 270 45
[25] Hultman L, Sundgren J E, Greene J E, Bergstrom D B and Petrov I 1995 J. Appl. Phys. 78 5395
[26] Ma C H, Huang J H and Chen H 2000 Surf. Coat. Technol. 133--134 289
[27] Pelleg J, Zevin L Z, Lungo S and Croitoru N 1991 Thin Solid Films 197 117
[28] Wolfe D E and Singh J 1998 J. Mat. Sci. 33 3677
[29] Wolfe D E and Singh J 2000 Surf. Coat. Technol. 124 142
[30] Akyuz I, Kose S, Atay F and Bilgin V 2006 Semicond. Sci. Technol. 21 1620
[31] Barrett C S and Massalski T B 1966 Structure of Metals (New York: McGraw-Hill)
[32] Suryanarayana C and Norton M G 1998 X-ray Diffraction: A Practical Approach (Plenum Press) p125
[33] Williamson G K and Hall W H 1953 Acta Metall. 1 22
[34] Kuzel Jr R and Klimanek P 1989 J. Appl. Crystall. 22 299
[35] Klein M V, Holy J A and Williams W S 1978 Phys. Rev. B 17 1546
[36] Amber M, Barsoum M W, El-Raghy T, Weiss I, éclair S L and Liptak D 1998 J. Appl. Phys. 4 5817
[37] Wipf H, Klein M V and Williams W S 1981 Phys. Stat. Solidi B 108 489
[1] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[2] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[3] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[4] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[5] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[6] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[7] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[8] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[9] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[10] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[11] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[12] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[13] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[14] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[15] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
No Suggested Reading articles found!