Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 046201    DOI: 10.1088/1674-1056/ad23d4
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Stability and melting behavior of boron phosphide under high pressure

Wenjia Liang(梁文嘉)1, Xiaojun Xiang(向晓君)1, Qian Li(李倩)1, Hao Liang(梁浩)2,3,‡, and Fang Peng(彭放)1,†
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621900, China;
3 Center for High Pressure Science and Technology Advanced Research(HPSTAR), Shanghai 201203, China
Abstract  Boron phosphide (BP) has gained significant research attention due to its unique photoelectric and mechanical properties. In this work, we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope. The phase diagram of BP was explored in both B-rich and P-rich environments, revealing crucial insight into its behavior at 5.0 GPa. Additionally, we measured the melting curve of BP from 8.0 GPa to 15.0 GPa. Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments. Furthermore, we report a remarkable observation of melting curve frustration at 10.0 GPa. This study will enhance our understanding of stability of BP under high pressure, shedding light on its potential application in semiconductor, thermal, and light-transmitting devices.
Keywords:  boron phosphide      stability      melting curve      high pressure  
Received:  16 October 2023      Revised:  11 January 2024      Accepted manuscript online:  30 January 2024
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  64.70.dj (Melting of specific substances)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074273) and the Sichuan Science and Technology Program (Grant No. 2022NSFSC1810).
Corresponding Authors:  Hao Liang, Fang Peng     E-mail:  lh910518@126.con;pengfang@scu.edu.cn

Cite this article: 

Wenjia Liang(梁文嘉), Xiaojun Xiang(向晓君), Qian Li(李倩), Hao Liang(梁浩), and Fang Peng(彭放) Stability and melting behavior of boron phosphide under high pressure 2024 Chin. Phys. B 33 046201

[1] Wettling W and Windscheif J 1984 Solid State Commun. 50 33
[2] Ananthanarayanan K P, Mohanty C and Gielisse P J 1973 J. Cryst. Growth 20 63
[3] Deb J and Sarkar U 2021 Appl. Surf. Sci. 541 148657
[4] Munsif S, Khan S, Ali A, Gilani M A, Iqbal J, Ludwig R and Ayub K 2018 J. Mol. Liq. 271 51
[5] Lund J C, Olschner F, Ahmed F and Shah K S 1989 MRS Online Proc. Libr. OPL 162 601
[6] Liang W, Zhang L, Xiang X, Wang J, Zhang L, Wu B, Wang Y, Zeng Y, Guan S and Tang Q 2021 Solid State Commun. 327 114206
[7] Varley J B, Miglio A, Ha V-A, van Setten M J, Rignanese G-M and Hautier G 2017 Chem. Mater. 29 2568
[8] Shi L, Li P, Zhou W, Wang T, Chang K, Zhang H, Kako T, Liu G and Ye J 2016 Nano Energy 28 158
[9] Gibson D R, Waddell E M, Wilson S A and Lewis K L 1994 Opt. Eng. 33 957
[10] Mou S, Wu T, Xie J, Zhang Y, Ji L, Huang H, Wang T, Luo Y, Xiong X and Tang B 2019 Adv. Mater. 31 1903499
[11] Zheng Q, Li S, Li C, Lv Y, Liu X, Huang P Y, Broido D A, Lv B and Cahill D G 2018 Adv. Funct. Mater. 28 1805116
[12] Jiajun H, Kai W, Xinguang H, Ting Y and Hongyan X 2022 J. Inorg. Mater. 37 933
[13] Kang J S, Wu H and Hu Y 2017 Nano Lett. 17 7507
[14] Gui R, Xue Z, Zhou X, Gu C, Ren X, Cheng H, Ma D, Qin J, Liang Y and Yan X 2020 Phys. Rev. B 101 035302
[15] Kumashiro Y, Yao T and Gonda S 1984 J. Cryst. Growth 70 515
[16] Kumashiro Y 1990 J. Mater. Res. 5 2933
[17] Solozhenko V L and Bushlya V 2019 J. Superhard Mater. 41 84
[18] Popper P and Ingles T A 1957 Nature 179 1075
[19] Perri J A, La Placa S and Post B 1958 Acta Crystallogr. 11 310
[20] Solozhenko V L and Mukhanov V A 2015 J. Superhard Mater. 37 438
[21] Peret J L 1964 J. Am. Ceram. Soc. 47 44
[22] Zhang X, Qin J, Liu H, Zhang S, Ma M, Luo W, Liu R and Ahuja R 2015 Sci. Rep. 5 8761
[23] Kulnitskiy B A, Blank V D, Gordeeva T A, Mukhanov V A and Solozhenko V L 2022 Solid State Commun. 354 114886
[24] Tang Y, Zhang Q, Lou H, Tan L, Tian Y, Guan S, Wang W, Huang M, Zeng Q and He D 2021 J. Alloys Compd. 886 161239
[25] Rodríguez-Carvajal J 1993 Physica B 192 55
[26] Wang S, He D, Wang W and Lei L 2009 High Press. Res. 29 806
[27] Wang Y, Tang Y, Kou Z and He D 2023 Int. J. Refract. Met. Hard Mater. 110 106015
[28] Zhou X, Ma D, Wang L, Zhao Y and Wang S 2020 Rev. Sci. Instrum. 91 015118
[29] Wang W, Peng F, Liang H, Guan S, Liang W, Zhang L, Huang M, Tang Y and He D 2022 Int. J. Refract. Met. Hard Mater. 102 105701
[30] Wang J, He D, Li X, Zhang J, Li Q, Wang Z, Su Y, Tian Y, Yang J and Peng B 2020 Solid State Commun. 307 113805
[31] Gunasekaran S and Anbalagan G 2007 Bull. Mater. Sci. 30 339
[32] Engler P, Santana M W, Mittleman M L and Balazs D 1989 Thermochim. Acta 140 67
[33] Liang A, Liu Y, Liang H, Liu F, Fan C, Zhang J, Wu J, Chen J and He D 2018 High Press. Res. 38 458
[34] An P, He Z, Qin J, Li Z, Li Y, Kou Z and He D 2011 J. Wuhan Univ. Technol. Mater. Sci. Ed. 26 914
[35] Qin J, He D, Lei L, An P, Fang L, Li Y, Wang F and Kou Z 2009 J. Alloys Compd. 476 L8
[36] Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L and Peng F 2008 Acta Phys. Sin. 57 5429 (in Chinese)
[37] Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H H, Li Z Y, Zhang J, Wang S M, Kou Z L and Peng F 2010 Acta Phys. Sin. 59 3107 (in Chinese)
[38] Wang W D, He D w, Tang M j, Li F j, Liu L and Bi Y 2012 Diam. Relat. Mater. 27 49
[39] Wang J, Tian Y, Su Y, Xiang X, Zhou L, Huang M, Zhang L and He D 2023 CrystEngComm 25 1884
[40] McDaniel M L, Babb Jr S E and Scott G J 1962 J. Chem. Phys. 37 822
[41] Xiang X J, Song G Z, Zhou X F, Liang H, Xu Y, Qin S J, Wang J P, Hong F, Dai J H and Zhou B W 2020 Chin. Phys. B 29 088202
[42] Li C, Li Q, Li Y, She X, Cao H, Zhang P, Wang L and Ding Y 2019 Appl. Energy 238 1074
[43] Chipman J 1972 Metall. Mater. Trans. B 3 55
[44] Liang A, Liu Y, Shi L, Lei L, Zhang F, Hu Q and He D 2019 Phys. Rev. Res. 1 033090
[45] Hrubiak R, Meng Y and Shen G 2017 Nat. Commun. 8 14562
[46] Ross M, Boehler R and Errandonea D 2007 Phys. Rev. B 76 184117
[47] Ross M, Errandonea D and Boehler R 2007 Phys. Rev. B 76 184118
[1] Robust Tc in element molybdenum up to 160 GPa
Xinyue Wu(吴新月), Shumin Guo(郭淑敏), Jianning Guo(郭鉴宁), Su Chen(陈诉), Yulong Wang(王煜龙), Kexin Zhang(张可欣), Chengcheng Zhu(朱程程), Chenchen Liu(刘晨晨), Xiaoli Huang(黄晓丽), Defang Duan(段德芳), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(4): 047406.
[2] A proposal for detecting weak electromagnetic waves around 2.6 μm wavelength with Sr optical clock
Ruo-Shui Han(韩弱水), Wei Wang(王伟), and Tao Wang(汪涛). Chin. Phys. B, 2024, 33(4): 043201.
[3] Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕). Chin. Phys. B, 2024, 33(4): 048102.
[4] Enhanced stability of FA-based perovskite: Rare-earth metal compound EuBr2 doping
Minna Hou(候敏娜), Xu Guo(郭旭), Meidouxue Han(韩梅斗雪), Juntao Zhao(赵均陶), Zhiyuan Wang(王志元), Yi Ding(丁毅), Guofu Hou(侯国付), Zongsheng Zhang(张宗胜), and Xiaoping Han(韩小平). Chin. Phys. B, 2024, 33(4): 047802.
[5] Wave nature of Rosensweig instability
Liu Li(李柳), Decai Li(李德才), Zhiqiang Qi(戚志强), Lu Wang(王璐), and Zhili Zhang(张志力). Chin. Phys. B, 2024, 33(3): 034701.
[6] Effects of connected automated vehicle on stability and energy consumption of heterogeneous traffic flow system
Jin Shen(申瑾), Jian-Dong Zhao(赵建东), Hua-Qing Liu(刘华清), Rui Jiang(姜锐), and Zhi-Xin Yu(余智鑫). Chin. Phys. B, 2024, 33(3): 030504.
[7] Parametric instability in the pure-quartic nonlinear Schrödinger equation
Yun-Hong Zhang(张云红) and Chong Liu(刘冲). Chin. Phys. B, 2024, 33(3): 030506.
[8] Dual-wavelength pumped latticed Fermi-Pasta-Ulam recurrences in nonlinear Schrödinger equation
Qian Zhang(张倩), Xiankun Yao(姚献坤), and Heng Dong(董恒). Chin. Phys. B, 2024, 33(3): 030502.
[9] A novel variable-order fractional chaotic map and its dynamics
Zhouqing Tang(唐周青), Shaobo He(贺少波), Huihai Wang(王会海), Kehui Sun(孙克辉), Zhao Yao(姚昭), and Xianming Wu(吴先明). Chin. Phys. B, 2024, 33(3): 030503.
[10] Controllable optical bistability in a Fabry-Pérot cavity with a nonlinear three-dimensional Dirac semimetal
Hong-Xia Yuan(袁红霞), Jia-Xue Li(李佳雪), Qi-Jun Ma(马奇军), Hai-Shan Tian(田海山),Yun-Yang Ye(叶云洋), Wen-Xin Luo(罗文昕), Xing-Hua Wu(吴杏华), and Le-Yong Jiang(蒋乐勇). Chin. Phys. B, 2024, 33(3): 034213.
[11] Multiple mixed state variable incremental integration for reconstructing extreme multistability in a novel memristive hyperchaotic jerk system with multiple cubic nonlinearity
Meng-Jiao Wang(王梦蛟) and Lingfang Gu(辜玲芳). Chin. Phys. B, 2024, 33(2): 020504.
[12] Ultrafast dynamics in photo-excited Mott insulator Sr3Ir2O7 at high pressure
Xia Yin(尹霞), Jianbo Zhang(张建波), Wang Dong(王东), Takeshi Nakagawa, Chunsheng Xia(夏春生), Caoshun Zhang(张曹顺), Weicheng Guo(郭伟程), Jun Chang(昌峻), and Yang Ding(丁阳). Chin. Phys. B, 2024, 33(1): 016103.
[13] Characteristic analysis of 5D symmetric Hamiltonian conservative hyperchaotic system with hidden multiple stability
Li-Lian Huang(黄丽莲), Yan-Hao Ma(马衍昊), and Chuang Li(李创). Chin. Phys. B, 2024, 33(1): 010503.
[14] Growth mechanism and characteristics of electron drift instability in Hall thruster with different propellant types
Long Chen(陈龙), Zi-Chen Kan(阚子晨), Wei-Fu Gao(高维富), Ping Duan(段萍), Jun-Yu Chen(陈俊宇), Cong-Qi Tan(檀聪琦), and Zuo-Jun Cui(崔作君). Chin. Phys. B, 2024, 33(1): 015203.
[15] A step to the decentralized real-time timekeeping network
Fangmin Wang(王芳敏), Yufeng Chen(陈雨锋), Jianhua Zhou(周建华), Yuting Lin(蔺玉亭), Jun Yang(杨军), Bo Wang(王波), and Lijun Wang(王力军). Chin. Phys. B, 2024, 33(1): 010702.
No Suggested Reading articles found!