Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 046101    DOI: 10.1088/1674-1056/ad14ff
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas Prev   Next  

Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops

Yaolong Li(李耀隆)1,2, Songyuan Li(李松远)1,2, Meifen Wang(王美芬)1,2, and Renliang Zhang(张任良)1,2,†
1 Hebei Key Laboratory of Mechanical Reliability for Heavy Equipment and Large Structures, Yanshan University, Qinhuangdao 066004, China;
2 School of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao 066004, China
Abstract  Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology. Herein, we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes (CNT) with temperature gradients, specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT. We reveal that the underlying mechanism is the uneven potential energy created by the hoops, i.e., the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT. This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.
Keywords:  molecular dynamics      thermal drive      nanotube hoop      mass transport  
Received:  01 September 2023      Revised:  06 December 2023      Accepted manuscript online:  13 December 2023
PACS:  61.46.Fg (Nanotubes)  
  31.15.xv (Molecular dynamics and other numerical methods)  
  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
Fund: Project supported by the Doctoral Fund of Yanshan University (Grant No. B919), the Program of Independent Research for Young Teachers of Yanshan University (Grant No. 020000534), and the S&T Program of Hebei Province of China (Grant No. QN2016123). The authors thank the High Performance Computing and Data Center, College of Civil Engineering and Mechanics of Yanshan University.
Corresponding Authors:  Renliang Zhang     E-mail:  zhrleo@ysu.edu.cn

Cite this article: 

Yaolong Li(李耀隆), Songyuan Li(李松远), Meifen Wang(王美芬), and Renliang Zhang(张任良) Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops 2024 Chin. Phys. B 33 046101

[1] Holt J K, Park H G, Wang Y, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034
[2] Coluci V R, Timoteo V S and Galvao D S 2009 Appl. Phys. Lett. 95 045503
[3] Zhang R, Di Q, Wang X and Gu C 2010 J. Hydrodynam. 22 366
[4] Chen J, Gao Y, Wang C, Zhang R, Zhao H and Fang H 2015 J. Phys. Chem. C 119 17362
[5] Chang T, Zhang H, Guo Z, Guo X and Gao H 2015 Phys. Rev. Lett. 114 015504
[6] Zhang R, Du G, Wang M, Yu W and Chen J 2019 J. Stat. Mech. Theroy Exp. 2019 063210
[7] Kurupath V P, Kannam S K, Hartkamp R and Sathian S P 2021 Desalination 505 114978
[8] Zhang R, Du G, Wang M and Li S 2022 J. Nano Res. 72 1
[9] Shen C, Brozena A H and Wang Y 2011 Nanoscale 3 503
[10] Santamaría-Holek I, Reguera D and Rubi J M 2013 J. Phys. Chem. C 117 3109
[11] Zhu F, Guo Z and Chang T 2020 Appl. Mater. Today 18 100520
[12] Shen J, Liu G, Han Y and Jin W 2021 Nat. Rev. Mater. 6 294
[13] Cai K, Sun S, Shi J and Qin Q 2021 Phys. Rev. Appl. 15 054017
[14] Puri I K and Ganguly R 2014 Annu. Rev. Fluid Mech. 46 407
[15] Gascoyne P R C and Vykoukal J 2015 Electrophoresis 23 1973
[16] Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X and Dai H 2008 Cancer Res. 68 6652
[17] Nisar A, Afzulpurkar N, Mahaisavariya B and Tuantranont A 2008 Sens. Actuators B Chem. 130 917
[18] Hochbaum A I and Yang P 2010 Chem. Rev. 110 527
[19] Guo Z, Zhang H, Li J, Leng J, Zhang Y and Chang T 2018 Nanoscale 10 4897
[20] Fan W and Chen J 2020 Phys. Rev. E 101 010101
[21] Wang Y and Chen J 2022 Europhys. Lett. 139 51002
[22] Chen J 2020 J. Phys. Chem. Lett. 11 4298
[23] Chen J, Chen S and Gao Y 2017 Phys. Rev. B 95 134301
[24] Wang J and Chen J 2020 Phys. Rev. E 101 042207
[25] Wang Y and Chen J 2021 Phys. Rev. B 104 224306
[26] Yang J, Du W, Wang Y, Wei N and Chen J 2023 Phys. Rev. B 108 144301
[27] Barreiro A, Rurali R, Hernández E R, Moser J, Pichler T, Forró L and Bachtold A 2008 Science 320 775
[28] Schoen P A, Walther J H, Arcidiacono S, Poulikakos D and Koumoutsakos P 2006 Nano Lett. 6 1910
[29] Zambrano H A, Walther J H and Jaffe R L 2009 J. Chem. Phys. 131 241104
[30] Oyarzua E, Walther J H, Megaridis C M, Koumoutsakos P and Zambrano H A 2017 ACS Nano 11 9997
[31] Oyarzua E, Walther J H and Zambrano H A 2018 Phys. Chem. Chem. Phys. 20 3672
[32] Hou Q, Cao B and Guo Z 2009 Nanotechnology 20 495503
[33] Becton M and Wang X 2014 J. Chem. Theory Comput. 10 722
[34] Guo Z, Chang T, Guo X and Gao H 2011 Phys. Rev. Lett. 107 105502
[35] Guo Z, Chang T, Guo X and Gao H 2012 J. Mech. Phys. Solids 60 1676
[36] Leng J, Guo Z, Zhang H, Chang T, Guo X and Gao H 2016 Nano Lett. 16 6396
[37] Plimpton S 1995 J. Comput. Phys. 117 1
[38] Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys. 112 6472
[39] Zhang R, Li S, Li Y and Wang M 2022 J. Nano Res. 74 97
[40] Huang Y, Zhu S and Li T 2014 Appl. Phys. Lett. 104 093102
[1] Thermal transport in composition graded silicene/germanene heterostructures
Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2024, 33(4): 044402.
[2] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[3] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[4] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[5] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[6] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[7] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[8] Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer
Yao Xu(徐耀), Shu-Wei Huang(黄舒伟), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2024, 33(2): 028701.
[9] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[10] Ab initio nonadiabatic molecular dynamics study on spin—orbit coupling induced spin dynamics in ferromagnetic metals
Wansong Zhu(朱万松), Zhenfa Zheng(郑镇法), Qijing Zheng(郑奇靖), and Jin Zhao(赵瑾). Chin. Phys. B, 2024, 33(1): 016301.
[11] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[12] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[13] Exploring unbinding mechanism of drugs from SERT via molecular dynamics simulation and its implication in antidepressants
Xin-Guan Tan(谭新官), Xue-Feng Liu(刘雪峰), Ming-Hui Pang(庞铭慧), Yu-Qing Wang(王雨晴), and Yun-Jie Zhao(赵蕴杰). Chin. Phys. B, 2023, 32(8): 088702.
[14] Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence
Lei Huang(黄磊), Kai Ren(任凯), Huanping Zhang(张焕萍), and Huasong Qin(覃华松). Chin. Phys. B, 2023, 32(7): 076103.
[15] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
No Suggested Reading articles found!