Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020504    DOI: 10.1088/1674-1056/acddd0
GENERAL Prev   Next  

Multiple mixed state variable incremental integration for reconstructing extreme multistability in a novel memristive hyperchaotic jerk system with multiple cubic nonlinearity

Meng-Jiao Wang(王梦蛟) and Lingfang Gu(辜玲芳)
School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China
Abstract  Memristor-based chaotic systems with infinite equilibria are interesting because they generate extreme multistability. Their initial state-dependent dynamics can be explained in a reduced-dimension model by converting the incremental integration of the state variables into system parameters. However, this approach cannot solve memristive systems in the presence of nonlinear terms other than the memristor term. In addition, the converted state variables may suffer from a degree of divergence. To allow simpler mechanistic analysis and physical implementation of extreme multistability phenomena, this paper uses a multiple mixed state variable incremental integration (MMSVII) method, which successfully reconstructs a four-dimensional hyperchaotic jerk system with multiple cubic nonlinearities except for the memristor term in a three-dimensional model using a clever linear state variable mapping that eliminates the divergence of the state variables. Finally, the simulation circuit of the reduced-dimension system is constructed using Multisim simulation software and the simulation results are consistent with the MATLAB numerical simulation results. The results show that the method of MMSVII proposed in this paper is useful for analyzing extreme multistable systems with multiple higher-order nonlinear terms.
Keywords:  extreme multistability      hyperchaotic      jerk system      nonlinearity  
Received:  15 April 2023      Revised:  02 June 2023      Accepted manuscript online:  13 June 2023
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071411) and the Research Foundation of Education Department of Hunan Province, China (Grant No. 20B567).
Corresponding Authors:  Meng-Jiao Wang     E-mail:  wangmj@xtu.edu.cn

Cite this article: 

Meng-Jiao Wang(王梦蛟) and Lingfang Gu(辜玲芳) Multiple mixed state variable incremental integration for reconstructing extreme multistability in a novel memristive hyperchaotic jerk system with multiple cubic nonlinearity 2024 Chin. Phys. B 33 020504

[1] Ott E, Grebogi C and Yorke J A 1990 Controlling Chaos 64 1196
[2] Lü J, Chen G and Cheng D 2004 Int. J. Bifurcat. Chaos 14 1507
[3] Chlouverakis K E and Sprott J C 2006 Chaos Solitons & Fractals 28 739
[4] Tigan G and Opriş D 2008 Chaos Solitons & Fractals 36 1315
[5] Pham V T, Jafari S and Wang X 2016 Int. J. Bifurcat. Chaos 26 1650069
[6] Li Z, Zhou H and Wang M 2021 Nonlinear Dyn. 104 1455
[7] Ma M, Yang Y and Qiu Z 2022 Nonlinear Dyn. 107 2935
[8] Guo M, Zhu Y and Liu R 2022 Neurocomputing 472 12
[9] Yu F, Shen H, Zhang Z, Huang Y, Cai S and Du S 2021 Integration 81 71
[10] Ma M, Xie X, Yang Y, Li Z and Sun Y 2023 Chin. Phys. B. 32 058701
[11] Wang M, An M and Zhang X 2023 Nonlinear Dyn. 111 1871
[12] Yu F, Xu S and Xiao X 2023 Integration 90 58
[13] Yu F, Zhang W and Xiao X 2023 Mathematics 11 701
[14] Zhou Y, Hua Z and Pun C M 2014 IEEE Trans. Cybernetics 45 2001
[15] Parvaz R and Zarebnia M 2018 Opt. Laser Technol. 101 30
[16] Min F, Cheng Y and Lu L 2021 Int. J. Bifurcat. Chaos 31 2150167
[17] Chen B, Xu Q and Chen M 2021 Frontiers Inform. Technol. Electron. Eng. 22 1517
[18] Chen M, Sun M and Bao H 2019 IEEE Trans. Ind. Electron. 67 2197
[19] Nganso E N, Mbouna S G N and Yamapi R 2023 Chaos Solitons & Fractals 169 113235
[20] Ruiz-Silva A, Gilardi-Velázquez H E and Campos E 2021 Chaos Solitons & Fractals 151 111263
[21] Chen M, Ren X and Wu H 2020 Chaos Solitons & Fractals 131 109544
[22] Chen M, Wang C and Bao H 2020 Chaos Solitons & Fractals 140 110188
[23] Liu T, Yan H and Banerjee S 2021 Chaos Solitons & Fractals 145 110791
[24] Chang H, Li Y and Chen G 2020 Int. J. Bifurcat. Chaos 30 2030019
[25] Lin H, Wang C and Hong Q 2020 IEEE Transactions on Circuits and Systems II: Express Briefs 67 3472
[26] Chen M, Sun M and Bao B 2018 Nonlinear Dyn. 91 1395
[27] Chen M, Feng Y and Bao H 2018 Chaos Solitons & Fractals 115 313
[28] Chen M, Feng Y and Bao H 2019 Complexity 140 110188
[29] Pham V T, Jafari S and Volos C 2019 Chaos Solitons & Fractals 120 213
[30] Idrisi M J and Ullah M S 2021 New Astronomy 89 101629
[31] Kalantonis V S, Vincent A E and Gyegwe J M 2021 Nonlinear Analysis and Global Optimization 167 251
[32] Wang L, Zhang S and Zeng Y C 2018 Electron. Lett. 54 808
[33] Corinto F and Forti M 2017 IEEE Transactions on Circuits and Systems I: Regular Papers. 64 1540
[34] Corinto F and Forti M 2016 IEEE Transactions on Circuits and Systems I: Regular Papers. 63 1997
[35] Itoh M and Chua L O 2013 Int. J. Bifurcat. Chaos 23 1330001
[36] Kengne J, Njitacke Z T and Fotsin H B 2016 Nonlinear Dyn. 83 751
[37] Korneev I A and Semenov V V 2017 Chaos 27 081104
[1] Characteristic analysis of 5D symmetric Hamiltonian conservative hyperchaotic system with hidden multiple stability
Li-Lian Huang(黄丽莲), Yan-Hao Ma(马衍昊), and Chuang Li(李创). Chin. Phys. B, 2024, 33(1): 010503.
[2] Quasi-anti-parity—time-symmetric single-resonator micro-optical gyroscope with Kerr nonlinearity
Jingtong Geng(耿靖童), Shuyi Xu(徐书逸), Ting Jin(靳婷), Shulin Ding(丁舒林), Liu Yang(杨柳), Ying Wang(王颖), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2024, 33(1): 014208.
[3] Nonlinear perturbation of a high-order exceptional point: Skin discrete breathers and the hierarchical power-law scaling
Hui Jiang(江慧), Enhong Cheng(成恩宏), Ziyu Zhou(周子榆), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(8): 084203.
[4] Nonlinear wave propagation in acoustic metamaterials with bilinear nonlinearity
Shiqi Liang(梁诗琪), Jiehui Liu(刘杰惠), Yun Lai(赖耘), and Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2023, 32(4): 044301.
[5] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[6] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[7] Absorption spectra and enhanced Kerr nonlinearity in a four-level system
Hao-Jie Huangfu(皇甫浩杰), Ying-Jie Du(杜英杰), and Ai-Hua Gao(高爱华). Chin. Phys. B, 2023, 32(11): 114214.
[8] Adiabatic evolution of optical beams of arbitrary shapes in nonlocal nonlinear media
Jiarui Che(车佳瑞), Yuxin Zheng(郑喻心), Guo Liang(梁果), and Qi Guo(郭旗). Chin. Phys. B, 2023, 32(10): 104207.
[9] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[10] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[11] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[12] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[13] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[14] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[15] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
No Suggested Reading articles found!