Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 034701    DOI: 10.1088/1674-1056/ad1485
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wave nature of Rosensweig instability

Liu Li(李柳)1,2, Decai Li(李德才)1,3,†, Zhiqiang Qi(戚志强)1,2, Lu Wang(王璐)1,2, and Zhili Zhang(张志力)1,2
1 School of Mechanical, Electronic, and Control Engineering, Beijing Jiaotong University, Beijing 100044, China;
2 Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale, Beijing 100044, China;
3 State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
Abstract  The explicit analytical solution of Rosensweig instability spikes' shapes obtained by Navier-Stokes (NS) equation in diverse magnetic field H vertical to the flat free surface of ferrofluids are systematically studied experimentally and theoretically. After carefully analyzing and solving the NS equation in elliptic form, the force balanced surface equations of spikes in Rosensweig instability are expressed as cosine wave in perturbated magnetic field and hyperbolic tangent in large magnetic field, whose results both reveal the wave-like nature of Rosensweig instability. The results of hyperbolic tangent form are perfectly fitted to the experimental results in this paper, which indicates that the analytical solution is basically correct. Using the forementioned theoretical results, the total energy of the spike distribution pattern is calculated. By analyzing the energy components under different magnetic field intensities H, the hexagon-square transition of Rosensweig instability is systematically discussed and explained in an explicit way.
Keywords:  ferrofluids      Rosensweig instability      hexagon-square transition  
Received:  31 October 2023      Revised:  30 November 2023      Accepted manuscript online:  12 December 2023
PACS:  47.65.Cb (Magnetic fluids and ferrofluids)  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  47.10.ad (Navier-Stokes equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51735006, 51927810, and U1837206) and Beijing Municipal Natural Science Foundation (Grant No. 3182013).
Corresponding Authors:  Decai Li     E-mail:  lidecai@tsinghua.edu.cn

Cite this article: 

Liu Li(李柳), Decai Li(李德才), Zhiqiang Qi(戚志强), Lu Wang(王璐), and Zhili Zhang(张志力) Wave nature of Rosensweig instability 2024 Chin. Phys. B 33 034701

[1] Cowley M D and Rosensweig R E 1967 J. Fluid Mech. 30 671
[2] Gailitis A 1977 J. Fluid Mech. 82 401
[3] Cao Y and Ding Z J 2014 J. Magn. Magn. Mater. 355 93
[4] Rosensweig R E 1987 Annu. Rev. Fluid Mech. 19 437
[5] Gollwitzer C, Rehberg I and Richter R 2006 J. Phys.: Condes. Matter 18 S2643
[6] Abou B, Wesfreid J E and Roux S 2000 J. Fluid Mech. 416 217
[7] Kubstrup C, Herrero H and PerezGarcia C 1996 Phys. Rev. E 54 1560
[8] Gollwitzer C, Matthies G, Richter R, Rehberg I and Tobiska L 2007 J. Fluid Mech. 571 455
[9] Matthies G and Tobiska L 2005 J. Magn. Magn. Mater. 289 346
[10] Li L, Li D C and Zhang Z L 2022 Front. Mater. 10 893072
[11] Li L, Li D C and Zhang Z L 2022 J. Magn. Magn. Mater. 564 170096
[12] Li L, Li D C, Wang L, Liang Z Q and Zhang Z L 2023 J. Magn. Magn. Mater. 12 171077
[13] Tita A and Vanichchapongjaroen P 2018 Mod. Phys. Lett. A 16 1850195
[14] Engel A, Lange A, Langer H, Mahr T and Chetverikov M V 1999 J. Magn. Magn. Mater. 201 310
[15] Lange A, Langer H and Engel A 2000 Physica D 140 294
[16] Rosensweig R E 1966 Nature 210 613
[17] Kats E I 2011 Low Temp. Phys. 37 812
[18] Spyropoulos A N, Papathanasiou A G and Boudouvis A G 2019 J. Fluid Mech. 870 389
[19] Shaked H 1974 Phys. Lett. A 50 385
[20] Dormann J L, Bessais L and Fiorani D 1988 J. Phys. C-Solid State Physics 21 2015
[21] Panczyk T, Warzocha T P and Camp P J 2010 J. Phys. Chem. C 114 21299
[22] Hoppe R 1966 Angew. Chem. Int. Edit. 5 95
[23] Friedrichs R and Engel A 2001 Phys. Rev. E 10 021406
[1] All-optical modulator based on a ferrofluid core metal cladding waveguide chip
Han Qing-Bang (韩庆邦), Yin Cheng (殷澄), Li Jian (李建), Tang Yi-Bin (汤一彬), Shan Ming-Lei (单鸣雷), Cao Zhuang-Qi (曹庄琪). Chin. Phys. B, 2013, 22(9): 094215.
No Suggested Reading articles found!