CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
In situ observation of the phase transformation kinetics of bismuth during shock release |
Jiangtao Li(李江涛)1,2, Qiannan Wang(王倩男)1,2, Liang Xu(徐亮)1,2, Lei Liu(柳雷)1, Hang Zhang(张航)1,2, Sota Takagi3,4, Kouhei Ichiyanagi4, Ryo Fukaya4, Shunsuke Nozawa4, and Jianbo Hu(胡建波)1,2,† |
1 Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China; 2 State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China; 3 Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan; 4 Institute of Materials Structure Science, High Energy Accelerator Research Organization(KEK), Ibaraki, 305-8572, Japan |
|
|
Abstract A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth. Results reveal a retarded transformation from the shock-induced Bi-V phase to a metastable Bi-IV phase during the shock release, instead of the thermodynamically stable Bi-III phase. The emergence of the metastable Bi-IV phase is understood by the competitive interplay between two transformation pathways towards the Bi-IV and Bi-III, respectively. The former is more rapid than the latter because the Bi-V to B-IV transformation is driven by interaction between the closest atoms while the Bi-V to B-III transformation requires interaction between the second-closest atoms. The nucleation time for the Bi-V to Bi-IV transformation is determined to be 5.1±0.9 ns according to a classical nucleation model. This observation demonstrates the importance of the formation of the transient metastable phases, which can change the phase transformation pathway in a dynamic process.
|
Received: 11 September 2023
Revised: 18 November 2023
Accepted manuscript online: 22 November 2023
|
PACS:
|
64.70.K-
|
|
|
64.60.My
|
(Metastable phases)
|
|
62.50.Ef
|
(Shock wave effects in solids and liquids)
|
|
Fund: This study was supported by the National Natural Science Foundation of China (Grant No. 12072331), the Science Challenge Project (Grant No. TZ2018001), the Japan Society for the Promotion of Science (Grant Nos. 17H04820 and 21H01677) and the Foundation of the United Laboratory of High-Pressure Physics and Earthquake Science, and was performed under the approval of the Photon Factory Program Advisory Committee (Proposal Nos. 2016S2-006 and 2020G680). |
Corresponding Authors:
Jianbo Hu
E-mail: jianbo.hu@caep.cn
|
Cite this article:
Jiangtao Li(李江涛), Qiannan Wang(王倩男), Liang Xu(徐亮), Lei Liu(柳雷), Hang Zhang(张航), Sota Takagi, Kouhei Ichiyanagi, Ryo Fukaya, Shunsuke Nozawa, and Jianbo Hu(胡建波) In situ observation of the phase transformation kinetics of bismuth during shock release 2024 Chin. Phys. B 33 046401
|
[1] Kraus D, Ravasio A, Gauthier M, et al. 2016 Nat. Commun. 7 10970 [2] Turneaure S J, Sharma S M, Volz T J, Winey J M and Gupta Y M 2017 Sci. Adv. 3 eaao3561 [3] Knudson M D, Desjarlais M P, Becker A, Lemke R W, Cochrane K R, Savage M E, Bliss D E, Mattsson T R and Redmer R 2015 Science 348 1455 [4] Celliers P M, Millot M, Brygoo S, McWilliams R S, Fratanduono D E, Rygg J R, Goncharov A F, Loubeyre P, Eggert J H, Peterson J L, Meezan N B, Le Pape S, Collins G W, Jeanloz R and Hemley R J 2018 Science 361 677 [5] Hartley N J, Zhang C, Duan X, Huang L G, Jiang S, Li Y, Yang L, Pelka A, Wang Z, Yang J and Kraus D 2020 Matter Radiat. Extrem. 5 028401 [6] McWilliams R S, Spaulding D K, Eggert J H, Celliers P M, Hicks D G, Smith R F, Collins G W and Jeanloz R 2012 Science 338 1330 [7] Eremets M I, Shimizu K, Kobayashi T C and Amaya K 1998 Science 281 1333 [8] Boettger J C and Wallace D C 1997 Phys. Rev. B 55 2840 [9] Hwang H, Galtier E, Cynn H, et al. 2020 Sci. Adv. 6 eaaz5132 [10] Turneaure S J, Sharma S M and Gupta Y M 2018 Phys. Rev. Lett. 121 135701 [11] Swinburne T D, Glavicic M G, Rahman K M, Jones N G, Coakley J, Eakins D E, White T G, Tong V, Milathianaki D, Williams G J, Rugg D, Sutton A P and Dye D 2016 Phys. Rev. B 93 144119 [12] Bastea M, Bastea S and Becker R 2009 Appl. Phys. Lett. 95 241911 [13] Jensen B J, Gray III G T and Hixson R S 2009 J. Appl. Phys. 105 103502 [14] Barker L M and Hollenbach R E 1974 J. Appl. Phys. 45 4872 [15] Kalita P, Specht P, Root S, Sinclair N, Schuman A, White M, Cornelius A L, Smith J and Sinogeikin S 2017 Phys. Rev. Lett. 119 255701 [16] Gorman M G, Coleman A L, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Galtier E, Lee H J, Granados E, Sliwa M, Sanloup C, Rothman S, Fratanduono D E, Smith R F, Collins G W, Eggert J H, Wark J S and McMahon M I 2018 Sci. Rep. 8 16927 [17] Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G and Collins G W 2008 Phys. Rev. Lett. 101 065701 [18] Principi E, Minicucci M, Di Cicco A, Trapananti A, De Panfilis S and Poloni R 2006 Phys. Rev. B 74 064101 [19] Bastea M, Bastea S, Emig J A, Springer P T and Reisman D B 2005 Phys. Rev. B 71 180101 [20] Jenei Z, Liermann H P, Husband R, Méndez A S J, Pennicard D, Marquardt H, O'Bannon E F, Pakhomova A, Konopkova Z, Glazyrin K, Wendt M, Wenz S, McBride E E, Morgenroth W, Winkler B, Rothkirch A, Hanfland M and Evans W J 2019 Rev. Sci. Instrum. 90 065114 [21] Akahama Y, Kawamura H and Singh A K 2002 J. Appl. Phys. 92 5892 [22] McMahon M I, Degtyareva O and Nelmes R J 2000 Phys. Rev. Lett. 85 4896 [23] Degtyareva O, McMahon M I and Nelmes R J 2004 High Press. Res. 24 319 [24] Häussermann U, Söderberg K and Norrestam R 2002 J. Am. Chem. Soc. 124 15359 [25] Chen J H, Iwasaki H and Kikegawa T 1997 J. Phys. Chem. Solids 58 247 [26] Cannon J F 1974 J. Phys. Chem. Ref. Data 3 781 [27] Klement W, Jayaraman A and Kennedy G C 1963 Phys. Rev. 131 632 [28] Pépin C M, Sollier A, Marizy A, Occelli F, Sander M, Torchio R and Loubeyre P 2019 Phys. Rev. B 100 060101 [29] Gorman M G, Coleman A L, Briggs R, McWilliams R S, Hermann A, McGonegle D, Bolme C A, Gleason A E, Galtier E, Lee H J, Granados E, McBride E E, Rothman S, Fratanduono D E, Smith R F, Collins G W, Eggert J H, Wark J S and McMahon M I 2019 Appl. Phys. Lett. 114 120601 [30] Husband R J, O'Bannon E F, Liermann H P, Lipp M J, Méndez A S J, Kon^opková Z, McBride E E, Evans W J and Jenei Z 2021 Sci. Rep. 11 14859 [31] Hu J, Ichiyanagi K, Doki T, Goto A, Eda T, Norimatsu K, Harada S, Horiuchi D, Kabasawa Y, Hayashi S, Uozumi S, Kawai N, Nozawa S, Sato T, Adachi S and Nakamura K G 2013 Appl. Phys. Lett. 103 161904 [32] Takagi S, Ichiyanagi K, Kyono A, Nozawa S, Kawai N, Fukaya R, Funamori N and Adachi S 2020 J. Synchrotron Rad. 27 371 [33] Weng J, Wang X, Ma Y, Tan H, Cai L, Li J and Liu C 2008 Rev. Sci. Instru. 79 113101 [34] Nissim N, Greenberg E, Werdiger M, Horowitz Y, Bakshi L, Ferber Y, Glam B, Fedotov-Gefen A, Perelmutter L and Eliezer S 2021 Matter Radiat. Extrem. 6 046902 [35] Chen X H, Zeng X L, Fan D, Liu Q C, Bie B X, Zhou X M and Luo S N 2014 Rev. Sci. Instrum. 85 026106 [36] Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G and Collins G W 2011 J. Appl. Phys. 109 123521 [37] LaLone B M, Fat'yanov O V, Asay J R and Gupta Y M 2008 J. Appl. Phys. 103 093505 [38] Ramis R, Schmalz R and Meyer-Ter-Vehn J 1988 Comput. Phys. Comm. 49 475 [39] Gao L, Ding X, Lookman T, Sun J and Salje E K H 2016 Appl. Phys. Lett. 109 031912 [40] Armstrong M R, Radousky H B, Austin R A, et al. 2021 JOM 73 2185 [41] Degtyareva V F 2000 Phys. Rev. B 62 9 [42] Katzke H and Tolédano P 2008 Phys. Rev. B 77 024109 [43] Singh A K 1985 Mater. Sci. Forum 3 291 [44] Chandra Shekar N V and Rajan K G 2001 Bull. Mater. Sci. 24 1 [45] Avrami M 1939 J. Chem. Phys. 7 1103 [46] Avrami M 1940 J. Chem. Phys. 8 212 [47] Avrami M 1941 J. Chem. Phys. 9 177 [48] Krüger T, Merkau B, Grosshans W A and Holzapfel W B 1990 High Press. Res. 2 193 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|