Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 034213    DOI: 10.1088/1674-1056/acfdfe
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Controllable optical bistability in a Fabry-Pérot cavity with a nonlinear three-dimensional Dirac semimetal

Hong-Xia Yuan(袁红霞)1, Jia-Xue Li(李佳雪)1, Qi-Jun Ma(马奇军)1, Hai-Shan Tian(田海山)1, Yun-Yang Ye(叶云洋)2,†, Wen-Xin Luo(罗文昕)2, Xing-Hua Wu(吴杏华)3, and Le-Yong Jiang(蒋乐勇)1
1 School of Physics and Electronics, Hunan Normal University, Changsha 410081, China;
2 School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou 325035, China;
3 Key Laboratory for Microstructural Functional Materials of Jiangxi Province, College of Science, Jiujiang University, Jiujiang 332005, China
Abstract  Optical bistability (OB) is capable of rapidly and reversibly transforming a parameter of an optical signal from one state to another, and homologous nonlinear optical bistable devices are core components of high-speed all-optical communication and all-optical networks. In this paper, we theoretically investigated the controllable OB from a Fabry-Pérot (FP) cavity with a nonlinear three-dimensional Dirac semimetal (3D DSM) in the terahertz band. The OB stems from the third-order nonlinear bulk conductivity of the 3D DSM and the resonance mode has a positive effect on the generation of OB. This FP cavity structure is able to tune the OB because the transmittance and the reflectance can be modulated by the Fermi energy of the 3D DSM. We believe that this FP cavity configuration could provide a reference concept for realizing tunable bistable devices.
Keywords:  optical bistability      Dirac semimetal      Fabry-Pérot cavity  
Received:  07 May 2023      Revised:  15 September 2023      Accepted manuscript online:  28 September 2023
PACS:  42.65.Pc (Optical bistability, multistability, and switching, including local field effects)  
  71.55.Ak (Metals, semimetals, and alloys)  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: Project supported by the Wenzhou Major Science and Technology Innovation Project: Research and Industrialization of Key Technologies for Intelligent Dynamic Ultrahigh Pressure Microfluidizer (Grant No. ZG2023012), Wenzhou Major Science and Technology Innovation PR Project (Grant No. ZG2022011), the National Natural Science Foundation of China (Grant No. 62305254), the Scientific Research Fund of the Natural Science Foundation of Hunan Province (Grant No. 2022JJ30394), the Changsha Natural Science Foundation (Grant Nos. kq2202236 and kq2202246), and the Science and Technology Project of Jiangxi Provincial Education Department (Grant No. GJJ190911).
Corresponding Authors:  Yun-Yang Ye     E-mail:  20200285@wzu.edu.cn

Cite this article: 

Hong-Xia Yuan(袁红霞), Jia-Xue Li(李佳雪), Qi-Jun Ma(马奇军), Hai-Shan Tian(田海山),Yun-Yang Ye(叶云洋), Wen-Xin Luo(罗文昕), Xing-Hua Wu(吴杏华), and Le-Yong Jiang(蒋乐勇) Controllable optical bistability in a Fabry-Pérot cavity with a nonlinear three-dimensional Dirac semimetal 2024 Chin. Phys. B 33 034213

[1] Abraham E and Smith S D 1982 Rep. Prog. Phys. 45 815
[2] Barclay P, Srinivasan K and Painter O 2005 Opt. Express 13 801
[3] Winful H G, Marburger J H and Garmire E 1979 Appl. Phys. Lett. 35 379
[4] Nagasaki Y, Gholipour B, Ou J Y, Tsuruta M, Plum E, MacDonald F K, Takahara J and Zheludev N I 2018 Appl. Phys. Lett. 113 021105
[5] Mazurenko D A, Kerst R, Dijkhuis J I, Akimov A V, Golubev V G, Kurdyukov D A, Pevtsov A B and Selkin A V 2003 Phys. Rev. Lett. 91 213903
[6] Notomi M, Shinya A, Mitsugi S, Kira G and Tanabe T 2005 Opt. Express 13 2678
[7] Kamran U 2019 Chin. Phys. B 28 114209
[8] Hu W, Jiang J, Xie D, Wang S, Bi K, Duan H, Yang J and He J 2018 Nanoscale 10 14893
[9] Guo J, Jiang L, Jia Y, Dai X, Xiang Y and Fan D 2017 Opt. Express 25 5972
[10] Xu J, Peng Y, Wang S, Jiang J, Qian S and Jiang L 2022 Opt. Lett. 47 2125
[11] Grieco A, Slutsky B, T. H. Tan D, Zamek S, P.Nezhad M and Fainman Y 2012 J. Light. Technol. 30 2352
[12] Li H, Sheng C X, and Chen Q 2012 Chin. Phys. Lett. 29 054201
[13] Long X, Bao Y, Yuan H, Zhang H, Dai X, Li Z, Jiang L and Xiang Y 2022 Opt. Express 30 20847
[14] Yan J, Zhu X and Chen B 2018 Chin. Phys. B 27 074214
[15] Zhu Z W, Xue S Z, Wu Y M, Chen G Q and Ma C Q 2012 Chin. Phys. Lett. 29 037802
[16] Sanderson M, Ang Y S, Gong S, Zhao T, Hu M, Zhong R, Chen X, Zhang P, Zhang C and Liu S 2015 Appl. Phys. Lett. 107 203113
[17] Wang S, Xu J, Yuan H, Zhang H, Long X, Jiang L and Jiang J 2022 Results Phys. 39 105735
[18] Yuan H, Long X, Zhang H, Jiang L, Miao S and Xiang Y 2022 Opt. Commun. 521 128567
[19] Wang H and Wang J 2018 Chin. Phys. B 27 107402
[20] Kotov O V and Loxovik Y E 2016 Phys. Rev. B 93 235417
[21] Wang Q, Li C, Ge S, Li J, Lu W, Lai J, Liu X, Ma D, Liao Z and Sun D 2017 Nano Lett. 17 834
[22] Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F and Hasan M 2014 Nat. Commun. 5 3786
[23] Wang T L, Cao M Y, Zhang Y P and Zhang H Y 2019 Opt. Mater. Express 9 1562
[24] Chen M, Chen C, Deng S, Liu H, Teng C, Cheng Y, Yang H, Xu R, Deng H and Yuan L 2019 OSA Continuum 2 2477
[25] Yan S, Song S and Zhang H 2020 Mater. Res. Express. 7 025041
[26] Ooi K, Ang Y S, Zhai Q, Tan D, Ang L K and Ong C K 2019 Apl Photonics 4 034402
[27] Liu N H, Zhu S Y, Chen H and Wu X 2002 Phys. Rev. E 65 046607
[28] Hou P, Chen Y Y, Chen X, Shi J L and Wang Q 2007 Phys. Rev. A 75 045802
[29] Gupta S D and Ray D S 1998 Phys. Rev. B 38 3628
[30] Zhan T R, Shi X, Dai Y Y, Liu X H and Zi J 2013 J. Phys. Condens. Matter 25 215301
[1] Enhanced and controllable reflected group delay based on Tamm surface plasmons with Dirac semimetals
Qiwen Zheng(郑棋文), Wenguang Lu(卢文广), Jiaqing Xu(胥加青),Yunyang Ye(叶云洋), Xinmin Zhao(赵新民), and Leyong Jiang(蒋乐勇). Chin. Phys. B, 2023, 32(7): 074208.
[2] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[3] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[4] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[5] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[6] Broadband strong optical dichroism in topological Dirac semimetals with Fermi velocity anisotropy
J Lim(林镇杰), K J A Ooi(黄健安), C Zhang(涨潮), L K Ang(洪礼祺), Yee Sin Ang(洪逸欣). Chin. Phys. B, 2020, 29(7): 077802.
[7] Realization of low-energy type-Ⅱ Dirac fermions in (Ir1-xPtx)Te2 superconductors
Bin-Bin Fu(付彬彬), Chang-Jiang Yi(伊长江), Zhi-Jun Wang(王志俊), Meng Yang(杨萌), Bai-Qing Lv(吕佰晴), Xin Gao(高鑫), Man Li(李满), Yao-Bo Huang(黄耀波), Hong-Ming Weng(翁红明), You-Guo Shi(石友国), Tian Qian(钱天), Hong Ding(丁洪). Chin. Phys. B, 2019, 28(3): 037103.
[8] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[9] Electrical transport and optical properties of Cd3As2 thin films
Yun-Kun Yang(杨运坤), Fa-Xian Xiu(修发贤), Feng-Qiu Wang(王枫秋), Jun Wang(王军), Yi Shi(施毅). Chin. Phys. B, 2019, 28(10): 107502.
[10] Controllable optical bistability in a three-mode optomechanical system with a membrane resonator
Jiakai Yan(闫甲楷), Xiaofei Zhu(朱小霏), Bin Chen(陈彬). Chin. Phys. B, 2018, 27(7): 074214.
[11] Electron transport in Dirac and Weyl semimetals
Huichao Wang(王慧超), Jian Wang(王健). Chin. Phys. B, 2018, 27(10): 107402.
[12] Control of topological phase transitions in Dirac semimetal films by exchange fields
Fei Yang(杨菲), Hai-Long Wang(王海龙), Hui Pan(潘晖). Chin. Phys. B, 2017, 26(1): 017102.
[13] High contrast all-optical diode based on direction-dependent optical bistability within asymmetric ring cavity
Xiu-Wen Xia(夏秀文), Xin-Qin Zhang(张新琴), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2016, 25(8): 084211.
[14] Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi from angle-resolved photoemission spectroscopy
Aiji Liang(梁爱基), Chaoyu Chen(陈朝宇), Zhijun Wang(王志俊), Youguo Shi(石友国), Ya Feng(冯娅), Hemian Yi(伊合绵), Zhuojin Xie(谢卓晋), Shaolong He(何少龙), Junfeng He(何俊峰), Yingying Peng(彭莹莹), Yan Liu(刘艳), Defa Liu(刘德发), Cheng Hu(胡成), Lin Zhao(赵林), Guodong Liu(刘国东), Xiaoli Dong(董晓莉), Jun Zhang(张君), M Nakatake, H Iwasawa, K Shimada, M Arita, H Namatame, M Taniguchi, Zuyan Xu(许祖彦), Chuangtian Chen(陈创天), Hongming Weng(翁红明), Xi Dai(戴希), Zhong Fang(方忠), Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2016, 25(7): 077101.
[15] Optical bistability and multistability via double dark resonance in graphene nanostructure
Seyyed Hossein Asadpour, G Solookinejad, M Panahi, E Ahmadi Sangachin. Chin. Phys. B, 2016, 25(6): 064201.
No Suggested Reading articles found!