Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016403    DOI: 10.1088/1674-1056/abb220

Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures

Minru Wen(文敏儒)1, Xing Xie(谢兴)1, Zhixun Xie(谢植勋)1, Huafeng Dong(董华锋)1,†, Xin Zhang(张欣)1, Fugen Wu(吴福根)2, and Chong-Yu Wang(王崇愚)3,
1 School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; 2 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; 3 Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  With the formation of structural vacancies, zirconium nitrides (key materials for cutting coatings, super wear-resistance, and thermal barrier coatings) display a variety of compositions and phases featuring both cation and nitrogen enrichment. This study presents a systematic exploration of the stable crystal structures of zirconium heminitride combining the evolutionary algorithm method and ab initio density functional theory calculations at pressures of 0 GPa, 30 GPa, 60 GPa, 90 GPa, 120 GPa, 150 GPa, and 200 GPa. In addition to the previously proposed phases P42/mnm-, Pnnm-, and Cmcm-Zr2N, five new high-pressure Zr2N phases of P4/nmm, I4/mcm, P21/m, \(P\bar 3 m1\), and C2/m are discovered. An enthalpy study of these candidate configurations reveals various structural phase transformations of Zr2N under pressure. By calculating the elastic constants and phonon dispersion, the mechanical and dynamical stabilities of all predicted structures are examined at ambient and high pressures. To understand the structure-property relationships, the mechanical properties of all Zr2N compounds are investigated, including the elastic moduli, Vickers hardness, and directional dependence of Young's modulus. The Cmcm-Zr2N phase is found to belong to the brittle materials and has the highest Vickers hardness (12.9 GPa) among all candidate phases, while the I4/mcm-Zr2N phase is the most ductile and has the lowest Vickers hardness (2.1 GPa). Furthermore, the electronic mechanism underlying the diverse mechanical behaviors of Zr2N structures is discussed by analyzing the partial density of states.
Keywords:  phase transition      phonon dispersion      Zr2N      first-principles calculations  
Published:  30 December 2020
PACS:  64.60.-i (General studies of phase transitions)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804057), the National Key R&D Program of China (Grant No. 2017YFB0701500), and the Natural Science Foundation of Guangdong, China (Grant Nos. 2017B030306003 and 2020A1515010862).
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚) Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures 2021 Chin. Phys. B 30 016403

1 Musil J 2000 Surface & Coatings Technology 125 322
2 Gotoh Y, Fujiwara S and Tsuji H 2016 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 34 031401
3 Siow P C, A. Ghani J, Ghazali M J, Jaafar T R, Selamat M A and Che Haron C H 2013 Ceramics International 39 1293
4 Sue J A and Troue H H 1991 Surface & Coatings Technology 49 31
5 Ogawa T 1994 J. Alloys Compd. 203 221
6 Gusev A I and Rempel A A 1997 Physica Status Solidi (a) 163 273
7 Wang W E and Olander D R 1995 Journal of Alloys and Compounds 224 153
8 Pierson H O1997 Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications (New York: Noyes Publication)
9 Zerr A, Miehe G and Riedel R 2003 Nat. Mater. 2 185
10 Bhadram V S, Kim D Y and Strobel T A 2016 Chemistry of Materials 28 1616
11 Brik M G and Ma C G 2012 Computational Materials Science 51 380
12 Srivastava A, Chauhan M and Singh R K 2011 Physica Status Solidi 248 2793
13 Chauhan M and Gupta D C 2014 International Journal of Refractory Metals and Hard Materials 42 77
14 Wang A J, Shang S L, Zhao D D, Wang J, Chen L, Du Y, Liu Z K, Xu T and Wang S Q 2012 Calphad-Comput. Coupling Ph. Diagrams Thermochem. 37 126
15 Weinberger C R, Yu X X, Yu H and Thompson G B 2017 Computational Materials Science 138 333
16 Yu R, Sun E, Jiao L, Cai Y, Wang H and Yao Y 2018 RSC Advances 8 36412
17 Yu S, Zeng Q, Oganov A R, Frapper G and Zhang L 2015 Phys. Chem. Chem. Phys. 17 11763
18 Bazhanov D I, Knizhnik A A, Safonov A A, Bagatur'yants A A, Stoker M W and Korkin A A 2005 J. Appl. Phys. 97 044108
19 Durandurdu M 2019 Philosophical Magazine 99 942
20 Yu S, Zeng Q, Oganov A R, Frapper G, Huang B, Niu H and Zhang L 2017 RSC Advances 7 4697
21 Zhang J, Oganov A R, Li X and Niu H 2017 Phys. Rev. B 95 020103
22 Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
23 Oganov A R, Lyakhov A O and Valle M 2011 Accounts of Chemical Research 44 227
24 Oganov A R, Ma Y, Lyakhov A O, Valle M and Gatti C 2010 Reviews in Mineralogy & Geochemistry 71 271
25 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
26 Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
27 Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
28 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
29 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
30 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
31 Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
32 Baroni S and Resta R 1986 Phys. Rev. B 33 7017
33 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
34 Shang S, Wang Y and Liu Z K 2007 Appl. Phys. Lett. 90 101909
35 Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
36 Voigt W1928 Lehrbuch der Kristallphysik(Leipzig Berlin: Ann Arbor, Mich)
37 Reuss A1929 J. Appl. Mathematics Mech. 9 49
38 Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
39 Zeng Q, Peng J, Oganov A R, Zhu Q, Xie C, Zhang X, Dong D, Zhang L and Cheng L 2013 Phys. Rev. B 88 214107
40 Jiang C and Jiang W 2014 Physica Status Solidi (b) 251 533
41 Clatterbuck D M, Krenn C R, Cohen M L and Morris Jr J W 2003 Phys. Rev. Lett. 91 135501
42 Milstein F 1971 Phys. Rev. B 3 1130
43 Nye J F1985 Physical Properties of Crystals: Their Representation by Tensors and Matrices (New York: Oxford University Press)
44 Wang H and Li M 2010 J. Phys.: Condens. Matter 22 295405
45 Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
46 Wen M, Xie X, Gao Y, Dong H, Mu Z, Wu F and Wang C Y 2019 J. Alloys and Compd. 806 1260
47 Tsuchiya T, Yamanaka T and Matsui M 2000 Physics and Chemistry of Minerals 27 149
48 Winston D and Jong M D Materials Project
49 Pugh S F 1954 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 823
[1] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[2] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[3] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[4] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[5] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[6] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[7] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[8] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[9] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[10] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[11] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[12] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[13] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[14] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[15] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
No Suggested Reading articles found!