Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016403    DOI: 10.1088/1674-1056/abb220

Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures

Minru Wen(文敏儒)1, Xing Xie(谢兴)1, Zhixun Xie(谢植勋)1, Huafeng Dong(董华锋)1,†, Xin Zhang(张欣)1, Fugen Wu(吴福根)2, and Chong-Yu Wang(王崇愚)3,
1 School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; 2 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; 3 Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  With the formation of structural vacancies, zirconium nitrides (key materials for cutting coatings, super wear-resistance, and thermal barrier coatings) display a variety of compositions and phases featuring both cation and nitrogen enrichment. This study presents a systematic exploration of the stable crystal structures of zirconium heminitride combining the evolutionary algorithm method and ab initio density functional theory calculations at pressures of 0 GPa, 30 GPa, 60 GPa, 90 GPa, 120 GPa, 150 GPa, and 200 GPa. In addition to the previously proposed phases P42/mnm-, Pnnm-, and Cmcm-Zr2N, five new high-pressure Zr2N phases of P4/nmm, I4/mcm, P21/m, \(P\bar 3 m1\), and C2/m are discovered. An enthalpy study of these candidate configurations reveals various structural phase transformations of Zr2N under pressure. By calculating the elastic constants and phonon dispersion, the mechanical and dynamical stabilities of all predicted structures are examined at ambient and high pressures. To understand the structure-property relationships, the mechanical properties of all Zr2N compounds are investigated, including the elastic moduli, Vickers hardness, and directional dependence of Young's modulus. The Cmcm-Zr2N phase is found to belong to the brittle materials and has the highest Vickers hardness (12.9 GPa) among all candidate phases, while the I4/mcm-Zr2N phase is the most ductile and has the lowest Vickers hardness (2.1 GPa). Furthermore, the electronic mechanism underlying the diverse mechanical behaviors of Zr2N structures is discussed by analyzing the partial density of states.
Keywords:  phase transition      phonon dispersion      Zr2N      first-principles calculations  
Received:  17 August 2020      Revised:  01 January 1900      Accepted manuscript online:  25 August 2020
PACS:  64.60.-i (General studies of phase transitions)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804057), the National Key R&D Program of China (Grant No. 2017YFB0701500), and the Natural Science Foundation of Guangdong, China (Grant Nos. 2017B030306003 and 2020A1515010862).
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚) Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures 2021 Chin. Phys. B 30 016403

1 Musil J 2000 Surface & Coatings Technology 125 322
2 Gotoh Y, Fujiwara S and Tsuji H 2016 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 34 031401
3 Siow P C, A. Ghani J, Ghazali M J, Jaafar T R, Selamat M A and Che Haron C H 2013 Ceramics International 39 1293
4 Sue J A and Troue H H 1991 Surface & Coatings Technology 49 31
5 Ogawa T 1994 J. Alloys Compd. 203 221
6 Gusev A I and Rempel A A 1997 Physica Status Solidi (a) 163 273
7 Wang W E and Olander D R 1995 Journal of Alloys and Compounds 224 153
8 Pierson H O1997 Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications (New York: Noyes Publication)
9 Zerr A, Miehe G and Riedel R 2003 Nat. Mater. 2 185
10 Bhadram V S, Kim D Y and Strobel T A 2016 Chemistry of Materials 28 1616
11 Brik M G and Ma C G 2012 Computational Materials Science 51 380
12 Srivastava A, Chauhan M and Singh R K 2011 Physica Status Solidi 248 2793
13 Chauhan M and Gupta D C 2014 International Journal of Refractory Metals and Hard Materials 42 77
14 Wang A J, Shang S L, Zhao D D, Wang J, Chen L, Du Y, Liu Z K, Xu T and Wang S Q 2012 Calphad-Comput. Coupling Ph. Diagrams Thermochem. 37 126
15 Weinberger C R, Yu X X, Yu H and Thompson G B 2017 Computational Materials Science 138 333
16 Yu R, Sun E, Jiao L, Cai Y, Wang H and Yao Y 2018 RSC Advances 8 36412
17 Yu S, Zeng Q, Oganov A R, Frapper G and Zhang L 2015 Phys. Chem. Chem. Phys. 17 11763
18 Bazhanov D I, Knizhnik A A, Safonov A A, Bagatur'yants A A, Stoker M W and Korkin A A 2005 J. Appl. Phys. 97 044108
19 Durandurdu M 2019 Philosophical Magazine 99 942
20 Yu S, Zeng Q, Oganov A R, Frapper G, Huang B, Niu H and Zhang L 2017 RSC Advances 7 4697
21 Zhang J, Oganov A R, Li X and Niu H 2017 Phys. Rev. B 95 020103
22 Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
23 Oganov A R, Lyakhov A O and Valle M 2011 Accounts of Chemical Research 44 227
24 Oganov A R, Ma Y, Lyakhov A O, Valle M and Gatti C 2010 Reviews in Mineralogy & Geochemistry 71 271
25 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
26 Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
27 Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
28 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
29 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
30 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
31 Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
32 Baroni S and Resta R 1986 Phys. Rev. B 33 7017
33 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
34 Shang S, Wang Y and Liu Z K 2007 Appl. Phys. Lett. 90 101909
35 Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
36 Voigt W1928 Lehrbuch der Kristallphysik(Leipzig Berlin: Ann Arbor, Mich)
37 Reuss A1929 J. Appl. Mathematics Mech. 9 49
38 Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
39 Zeng Q, Peng J, Oganov A R, Zhu Q, Xie C, Zhang X, Dong D, Zhang L and Cheng L 2013 Phys. Rev. B 88 214107
40 Jiang C and Jiang W 2014 Physica Status Solidi (b) 251 533
41 Clatterbuck D M, Krenn C R, Cohen M L and Morris Jr J W 2003 Phys. Rev. Lett. 91 135501
42 Milstein F 1971 Phys. Rev. B 3 1130
43 Nye J F1985 Physical Properties of Crystals: Their Representation by Tensors and Matrices (New York: Oxford University Press)
44 Wang H and Li M 2010 J. Phys.: Condens. Matter 22 295405
45 Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
46 Wen M, Xie X, Gao Y, Dong H, Mu Z, Wu F and Wang C Y 2019 J. Alloys and Compd. 806 1260
47 Tsuchiya T, Yamanaka T and Matsui M 2000 Physics and Chemistry of Minerals 27 149
48 Winston D and Jong M D Materials Project
49 Pugh S F 1954 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 823
[1] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[2] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[3] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[4] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[5] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[6] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[7] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[8] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[9] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[10] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[11] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[12] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[13] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[14] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[15] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
No Suggested Reading articles found!