Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087102    DOI: 10.1088/1674-1056/ab9292
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Giant interface spin-orbit torque in NiFe/Pt bilayers

Shu-Fa Li(李树发)1, Tao Zhu(朱涛)2
1 College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China;
2 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The current-induced spin-orbit torque (SOT) plays a dominant role to manipulate the magnetization in a heavy metal/ferromagnetic metal bilayer. We separate the contributions of interfacial and bulk spin-orbit coupling (SOC) to the effective field of field-like SOT in a typical NiFe/Pt bilayer by planar Hall effect (PHE). The effective field from interfacial SOC is directly measured at the transverse PHE configuration. Then, at the longitudinal configuration, the effective field from bulk SOC is determined, which is much smaller than that from interfacial SOC. The giant interface SOT in NiFe/Pt bilayers suggests that further analysis of interfacial effects on the current-induced manipulation of magnetization is necessary.
Keywords:  spin-orbit coupling      planar Hall effect      spin-orbit torques      spin Hall effect  
Received:  20 April 2020      Revised:  11 May 2020      Accepted manuscript online: 
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  72.25.Ba (Spin polarized transport in metals)  
  75.76.+j (Spin transport effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574375).
Corresponding Authors:  Tao Zhu     E-mail:  tzhu@iphy.ac.cn

Cite this article: 

Shu-Fa Li(李树发), Tao Zhu(朱涛) Giant interface spin-orbit torque in NiFe/Pt bilayers 2020 Chin. Phys. B 29 087102

[1] Brataas A and Hals K M D 2014 Nat. Nanotechnol. 9 86
[2] Gambardella P and Miron I M 2011 Philos. Trans. A. Math. Phys. Eng. Sci. 369 3175
[3] Haney P M, Lee H W, Lee K J, Manchon A and Stiles M D 2013 Phys. Rev. B 87 174411
[4] Ralph D and Stiles M 2008 J. Magn. Magn. Mater. 320 1190
[5] Brataas A, Tserkovnyak Y, Bauer G E W and Kelly P J 2012 Spin Pumping and Spin Transfer in Spin Current (Oxford:Oxford University Press) chap 8 p. 87
[6] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[7] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[8] Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548
[9] Feng X Y, Zhang Q H, Zhang H W, Zhang Y, Zhong R, Lu B W, Cao J W and Fan X L 2019 Chin. Phys. B 28 107105
[10] Ramaswamy R, Lee J M, Cai K and Yang H 2018 Appl. Phys. Rev. 5 031107
[11] Zhao Y C, Yang G, Dong B W, Wang S G, Wang C, Sun Y, Zhang J Y and Yu G H 2016 Chin. Phys. B 25 077501
[12] Avci C O, Rosenberg E, Baumgartner M, Beran L, Quindeau A, Gambardella P, Ross C A and Beach G S D 2017 Appl. Phys. Lett. 111 072406
[13] Gabor M, Petrisor T, Mos R B, Mesaros A, Nasui M, Belmeguenai M, Zighem F and Tiusan C 2016 J. Phys. D:Appl. Phys. 49 365003
[14] Hsu W H, Bell R and Victora R H 2018 IEEE Trans. Magn. 54 3401205
[15] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blügel S, Auffret S, Boulle O, Gaudin G and Gambardella P 2013 Nat. Nanotechnol. 8 587
[16] Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J and Gambardella P 2010 Nat. Mater. 9 230
[17] Haazen P P J, Muré E, Franken J H, Lavrijsen R, Swagten H J M and Koopmans B 2013 Nat. Mater. 12 299
[18] Liu L Q, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
[19] Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S and Ohno H 2013 Nat. Mater. 12 240
[20] Zheng Z C, Guo Q X, Jo D, Go D, Wang L H, Chen H C, Yin W, Wang X M, Yu G H, He W, Lee H W, Teng J and Zhu T 2020 Phys. Rev. Res. 2 013127
[21] Qiu X P, Deorani P, Narayanapillai K, Lee K S, Lee K J, Lee H W and Yang H S 2015 Sci. Rep. 4 4491
[22] Emori S, Nan T X, Belkessam A M, Wang X J, Matyushov A D, Babroski C J, Gao Y, Lin H and Sun N X 2016 Phys. Rev. B 93 180402(R)
[23] Fan X, Wu J, Chen Y, Jerry M J, Zhang H and Xiao J Q 2013 Nat. Commun. 4 1799
[24] Zhou X, Tang M, Fan X L, Qiu X P and Zhou S M 2016 Phys. Rev. B 94 144427
[25] Wang L, Wesselink R J H, Liu Y, Yuan Z, Xia K and Kelly R J 2016 Phys. Rev. Lett. 116 196602
[26] Li S F and Zhu T 2020 Jpn. J. Appl. Phys. 59 040906
[27] Thanh N T, Chun M G, Schmalhorst J, Reiss G, Kim K Y and Kim C G 2006 J. Magn. Magn. Mater. 304 e84
[28] Li G H, Yang T, Hu Q and Lai W Y 2000 Appl. Phys. Lett. 77 1032
[29] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater. 14 871
[30] Miron I M, Moore T, Szambolics H, Buda L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A and Gaudin G 2011 Nat. Mater. 10 419
[31] Qiu X P, Narayanapillai K, Wu Y, Deorani P, Yang D H, Noh W S, Park J H, Lee K J, Lee H W and Yang H 2015 Nat. Nanotechnol. 10 333
[32] Greening R W, Smith D A, Lin Y M, Jiang Z J, Barber J, Dail S, Heremans J J and Emori S 2020 Appl. Phys. Lett. 116 052402
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[4] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[5] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[6] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[7] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[8] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[9] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[10] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[11] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[12] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[13] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[14] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[15] Spin current transmission in Co1-xTbx films
Li Wang(王力), Yangtao Su(苏仰涛), Yang Meng(孟洋), Haibin Shi(石海滨), Xinyu Cao(曹昕宇), and Hongwu Zhao(赵宏武). Chin. Phys. B, 2022, 31(2): 027504.
No Suggested Reading articles found!