Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087102    DOI: 10.1088/1674-1056/ab9292
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Giant interface spin-orbit torque in NiFe/Pt bilayers

Shu-Fa Li(李树发)1, Tao Zhu(朱涛)2
1 College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China;
2 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The current-induced spin-orbit torque (SOT) plays a dominant role to manipulate the magnetization in a heavy metal/ferromagnetic metal bilayer. We separate the contributions of interfacial and bulk spin-orbit coupling (SOC) to the effective field of field-like SOT in a typical NiFe/Pt bilayer by planar Hall effect (PHE). The effective field from interfacial SOC is directly measured at the transverse PHE configuration. Then, at the longitudinal configuration, the effective field from bulk SOC is determined, which is much smaller than that from interfacial SOC. The giant interface SOT in NiFe/Pt bilayers suggests that further analysis of interfacial effects on the current-induced manipulation of magnetization is necessary.
Keywords:  spin-orbit coupling      planar Hall effect      spin-orbit torques      spin Hall effect  
Received:  20 April 2020      Revised:  11 May 2020      Published:  05 August 2020
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  72.25.Ba (Spin polarized transport in metals)  
  75.76.+j (Spin transport effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574375).
Corresponding Authors:  Tao Zhu     E-mail:  tzhu@iphy.ac.cn

Cite this article: 

Shu-Fa Li(李树发), Tao Zhu(朱涛) Giant interface spin-orbit torque in NiFe/Pt bilayers 2020 Chin. Phys. B 29 087102

[1] Brataas A and Hals K M D 2014 Nat. Nanotechnol. 9 86
[2] Gambardella P and Miron I M 2011 Philos. Trans. A. Math. Phys. Eng. Sci. 369 3175
[3] Haney P M, Lee H W, Lee K J, Manchon A and Stiles M D 2013 Phys. Rev. B 87 174411
[4] Ralph D and Stiles M 2008 J. Magn. Magn. Mater. 320 1190
[5] Brataas A, Tserkovnyak Y, Bauer G E W and Kelly P J 2012 Spin Pumping and Spin Transfer in Spin Current (Oxford:Oxford University Press) chap 8 p. 87
[6] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[7] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[8] Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548
[9] Feng X Y, Zhang Q H, Zhang H W, Zhang Y, Zhong R, Lu B W, Cao J W and Fan X L 2019 Chin. Phys. B 28 107105
[10] Ramaswamy R, Lee J M, Cai K and Yang H 2018 Appl. Phys. Rev. 5 031107
[11] Zhao Y C, Yang G, Dong B W, Wang S G, Wang C, Sun Y, Zhang J Y and Yu G H 2016 Chin. Phys. B 25 077501
[12] Avci C O, Rosenberg E, Baumgartner M, Beran L, Quindeau A, Gambardella P, Ross C A and Beach G S D 2017 Appl. Phys. Lett. 111 072406
[13] Gabor M, Petrisor T, Mos R B, Mesaros A, Nasui M, Belmeguenai M, Zighem F and Tiusan C 2016 J. Phys. D:Appl. Phys. 49 365003
[14] Hsu W H, Bell R and Victora R H 2018 IEEE Trans. Magn. 54 3401205
[15] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blügel S, Auffret S, Boulle O, Gaudin G and Gambardella P 2013 Nat. Nanotechnol. 8 587
[16] Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J and Gambardella P 2010 Nat. Mater. 9 230
[17] Haazen P P J, Muré E, Franken J H, Lavrijsen R, Swagten H J M and Koopmans B 2013 Nat. Mater. 12 299
[18] Liu L Q, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
[19] Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S and Ohno H 2013 Nat. Mater. 12 240
[20] Zheng Z C, Guo Q X, Jo D, Go D, Wang L H, Chen H C, Yin W, Wang X M, Yu G H, He W, Lee H W, Teng J and Zhu T 2020 Phys. Rev. Res. 2 013127
[21] Qiu X P, Deorani P, Narayanapillai K, Lee K S, Lee K J, Lee H W and Yang H S 2015 Sci. Rep. 4 4491
[22] Emori S, Nan T X, Belkessam A M, Wang X J, Matyushov A D, Babroski C J, Gao Y, Lin H and Sun N X 2016 Phys. Rev. B 93 180402(R)
[23] Fan X, Wu J, Chen Y, Jerry M J, Zhang H and Xiao J Q 2013 Nat. Commun. 4 1799
[24] Zhou X, Tang M, Fan X L, Qiu X P and Zhou S M 2016 Phys. Rev. B 94 144427
[25] Wang L, Wesselink R J H, Liu Y, Yuan Z, Xia K and Kelly R J 2016 Phys. Rev. Lett. 116 196602
[26] Li S F and Zhu T 2020 Jpn. J. Appl. Phys. 59 040906
[27] Thanh N T, Chun M G, Schmalhorst J, Reiss G, Kim K Y and Kim C G 2006 J. Magn. Magn. Mater. 304 e84
[28] Li G H, Yang T, Hu Q and Lai W Y 2000 Appl. Phys. Lett. 77 1032
[29] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater. 14 871
[30] Miron I M, Moore T, Szambolics H, Buda L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A and Gaudin G 2011 Nat. Mater. 10 419
[31] Qiu X P, Narayanapillai K, Wu Y, Deorani P, Yang D H, Noh W S, Park J H, Lee K J, Lee H W and Yang H 2015 Nat. Nanotechnol. 10 333
[32] Greening R W, Smith D A, Lin Y M, Jiang Z J, Barber J, Dail S, Heremans J J and Emori S 2020 Appl. Phys. Lett. 116 052402
[1] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[2] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[3] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[4] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[5] Ionic liquid gating control of planar Hall effect in Ni80Fe20/HfO2 heterostructures
Yang-Ping Wang(汪样平), Fu-Fu Liu(刘福福), Cai Zhou(周偲), Chang-Jun Jiang(蒋长军). Chin. Phys. B, 2020, 29(7): 077507.
[6] Ferromagnetic transition of a spin–orbit coupled dipolar Fermi gas at finite temperature
Xue-Jing Feng(冯雪景) and Lan Yin(尹澜). Chin. Phys. B, 2020, 29(11): 110306.
[7] Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap
Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华). Chin. Phys. B, 2020, 29(11): 116701.
[8] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[9] Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field
Yueming Wang(王月明), Zhen Jin(靳祯). Chin. Phys. B, 2020, 29(1): 010303.
[10] Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice
Xin Li(李欣), Rong Yu(俞榕), Qimiao Si. Chin. Phys. B, 2019, 28(7): 077102.
[11] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
[12] Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice
Ya-Wen Wei(魏娅雯), Chao Kong(孔超), Wen-Hua Hai(海文华). Chin. Phys. B, 2019, 28(5): 056701.
[13] Particle-hole fluctuations and possible superconductivity in doped α-RuCl3
Bin-Bin Wang(王斌斌), Wei Wang(王巍), Shun-Li Yu(于顺利), Jian-Xin Li(李建新). Chin. Phys. B, 2019, 28(5): 057402.
[14] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[15] Graphene-like Be3X2 (X=C, Si, Ge, Sn): A new family of two-dimensional topological insulators
Lingling Song(宋玲玲), Lizhi Zhang(张礼智), Yurou Guan(官雨柔), Jianchen Lu(卢建臣), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2019, 28(3): 037101.
No Suggested Reading articles found!