CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu) |
Yong Li(李勇)1, Peng Xu(徐鹏)2, Xiaoming Zhang(张小明)3, Guodong Liu(刘国栋)3, Enke Liu(刘恩克)4,5, Lingwei Li(李领伟)1,2 |
1 Institute of Advanced Magnetic Materials, School of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China; 2 Key Laboratory of Electromagnetic Processing of Materials(Ministry of Education), Northeastern University, Shenyang 110819, China; 3 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China; 4 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 5 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract The electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM (TM=Fe, Ni, Cu) were investigated by the first-principles calculations based on density-functional theory. The results indicate that all three alloys are stabilized in the ferromagnetic L21-type structure. The total magnetic moments mainly come from Mn and Fe atoms for Cd2MnFe, whereas, only from Mn atoms for Cd2MnNi and Cd2MnCu. The magnetic moment at equilibrium lattice constant of Cd2MnFe (6.36 μB) is obviously larger than that of Cd2MnNi (3.95 μB) and Cd2MnCu (3.82 μB). The large negative energy differences (ΔE) between martensite and austenite in Cd2MnFe and Cd2MnNi under tetragonal distortion and different uniform strains indicate the possible occurrence of ferromagnetic martensitic transformation (FMMT). The minimum total energies in martensitic phase are located with the c/a ratios of 1.41 and 1.33 for Cd2MnFe and Cd2MnNi, respectively. The total moments in martensitic state still maintain large values compared with those in cubic state. The study is useful to find the new all-d-metal Heusler alloys with FMMT.
|
Received: 28 February 2020
Revised: 07 May 2020
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
75.20.En
|
(Metals and alloys)
|
|
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ19E010006), the National Natural Science Foundation of China (Grant Nos. 51671048 and 91963123), the Ten Thousand Talents Plan of Zhejiang Province, China (Grant No. 2018R52003), and the Fundamental Research Funds for the Provincial University of Zhejiang Province, China (Grant No. GK199900X022). |
Corresponding Authors:
Lingwei Li
E-mail: lingwei@hdu.edu.cn
|
Cite this article:
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟) Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu) 2020 Chin. Phys. B 29 087101
|
[1] |
Webster P J, Ziebeck K R A, Town S L and Peak M S 1984 Philos. Mag. B 49 295
|
[2] |
Wang W H, Wu G H, Chen J L, Gao S X, Zhan W S, Wen G H and Zhang X X 2001 Appl. Phys. Lett. 79 1148
|
[3] |
Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T and Ishida K 2006 Nature 439 957
|
[4] |
Ullakko K, Huang J K, Kokorin V V and O'Handley R C 1997 Scr. Mater. 36 1133
|
[5] |
Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620
|
[6] |
Hu F, Shen B, Sun J and Wu G 2001 Phys. Rev. B 64 132412
|
[7] |
Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S and Acet M 2010 Nat. Mater. 9 478
|
[8] |
Nayak A K, Nicklas M, Chadov S, Khuntia P, Shekhar C, Kalache A, Baenitz M, Skourski Y, Guduru V K, Puri A, Zeitler U, Coey J M and Felser C 2015 Nat. Mater. 14 679
|
[9] |
Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B and Zhang X X 2006 Appl. Phys. Lett. 89 162503
|
[10] |
Singh S, Rawat R, Muthu S E, D'Souza S W, Suard E, Senyshyn A, Banik S, Rajput P, Bhardwaj S, Awasthi A M, Ranjan R, Arumugam S, Schlagel D L, Lograsso T A, Chakrabarti A and Barman S R 2012 Phys. Rev. Lett. 109 246601
|
[11] |
Cong D, Xiong W, Planes A, Ren Y, Mañosa L, Cao P, Nie Z, Sun X, Yang Z, Hong X and Wang Y 2019 Phys. Rev. Lett. 122 255703
|
[12] |
Wu M, Han Y, Bouhemadou A, Cheng Z, Khenata R, Kuang M, Wang X, Yang T, Yuan H and Wang X 2019 IUCrJ 6 218
|
[13] |
Zhao W Q, Dai X F, Zhang X M, Mo Z J, Wang X T, Chen G F, Cheng Z X and Liu G D 2019 IUCrJ 6 552
|
[14] |
Zhang Y J, Liu Z H, Wu Z G and Ma X Q 2019 IUCrJ 6 610
|
[15] |
Liu Z H, Tang Z J, Tan J G, Zhang Y J, Wu Z G, Wang X T, Liu G D and Ma X Q 2018 IUCrJ 5 794
|
[16] |
Li Y, Dai X, Liu G, Wei Z, Liu E, Han X, Du Z, Xi X, Wang W and Wu G 2018 Chin. Phys. B 27 026101
|
[17] |
Wang D, Wang C, Yu T and Liu W 2020 Chin. Phys. B 29 043103
|
[18] |
He C, Tang Y, Li X, He Y, Lu C and Guo Z 2019 Chin. Phys. B 28 117501
|
[19] |
Hao J, Hu F, Yu Z, Shen F, Zhou H, Gao Y, Qiao K, Li J, Zhang C, Liang W, Wang J, He J, Sun J and Shen B 2020 Chin. Phys. B 29 047504
|
[20] |
Wei Z Y, Liu E K, Chen J H, Li Y, Liu G D, Luo H Z, Xi X K, Zhang H G, Wang W H and Wu G H 2015 Appl. Phys. Lett. 107 022406
|
[21] |
Wei Z Y, Liu E K, Li Y, Han X L, Du Z W, Luo H Z, Liu G D, Xi X K, Zhang H W, Wang W H and Wu G H 2016 Appl. Phys. Lett. 109 071904
|
[22] |
Wei Z Y, Sun W, Shen Q, Shen Y, Zhang Y F, Liu E K and Liu J 2019 Appl. Phys. Lett. 114 101903
|
[23] |
Aznar A, Grácia-Condal A, Planes A, Lloveras P, Barrio M, Tamarit J L, Xiong W, Cong D, Popescu C and Mañosa L 2019 Phys. Rev. Mater. 3 044406
|
[24] |
Yu K, Liu K, Ma S, Han X, Zhang Z, Song Y, Zhang Y, Chen C, Luo X and Zhong Z 2019 J. Magn. Magn. Mater. 484 31
|
[25] |
Liu K, Ma S, Ma C, Han X, Yu K, Yang S, Zhang Z, Song Y, Luo X, Chen C, Rehman S U and Zhong Z 2019 J. Alloys Compd. 790 78
|
[26] |
Liu K, Han X, Yu K, Ma C, Zhang Z, Song Y, Ma S, Zeng H, Chen C, Luo X, Rehman S U and Zhong Z 2019 Intermetallics 110 106472
|
[27] |
Wang X, Cheng Z, Liu G, Dai X, Khenata R, Wang L and Bouhemadou A 2017 IUCrJ 4 758
|
[28] |
Duan J, Wang Y, Zhang A, Liu S and Dar S A 2019 Solid State Commun. 290 12
|
[29] |
Han Y, Wu M, Feng Y, Cheng Z, Lin T, Yang T, Khenata R and Wang X 2019 IUCrJ 6 465
|
[30] |
Ni Z, Ma Y, Liu X, Luo H, Liu H and Meng F 2018 J. Magn. Magn. Mater. 451 721
|
[31] |
Li L W 2016 Chin. Phys. B 25 037502
|
[32] |
Zhang Y K 2019 J. Alloys Compd. 787 1173
|
[33] |
Li L and Yan M 2020 J. Alloys Compd. 823 153810
|
[34] |
Han Y, Bouhemadou A, Khenata R, Cheng Z, Yang T and Wang X 2019 J. Magn. Magn. Mater. 471 49
|
[35] |
Yang T, You J, Hao L, Khenata R, Wang Z and Wang X 2020 J. Magn. Magn. Mater. 498 166188
|
[36] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[37] |
Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.:Condenes. Matter 14 2717
|
[38] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[39] |
Graf T, Casper F, Winterlik J, Balke B, Fecher G H and Felser C 2009 Z. Anorg. Allg. Chem. 635 976
|
[40] |
Skaftouros S, Özdoǧan K, Şaşı oǧlu E and Galanakis I 2013 Phys. Rev. B 87 024420
|
[41] |
Tan J G, Liu Z H, Zhang Y J, Li G T, Zhang H G, Liu G D and Ma X Q 2019 Results Phys. 12 1182
|
[42] |
Zeng Q, Shen J, Zhang H, Chen J, Ding B, Xi X, Liu E, Wang W and Wu G 2019 J. Phys.:Condens. Matter 31 425401
|
[43] |
Chen J, Liu E, Qi X, Luo H, Wang W, Zhang H, Wang S, Cai J and Wu G 2014 Comp. Mater. Sci. 89 130
|
[44] |
Faleev S V, Ferrante Y, Jeong J, Samant M G, Jones B and Parkin S S P 2017 Phys. Rev. Appl. 7 034022
|
[45] |
Entel P, Siewert M, Gruner M E, Chakrabarti A, Barman S R, Sokolovskiy V V and Buchelnikov V D 2013 J. Alloys Compd. 577 S107
|
[46] |
Han Y, Wu M, Kuang M, Yang T, Chen X and Wang X 2018 Results Phys. 11 1134
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|