Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087101    DOI: 10.1088/1674-1056/ab9739
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)

Yong Li(李勇)1, Peng Xu(徐鹏)2, Xiaoming Zhang(张小明)3, Guodong Liu(刘国栋)3, Enke Liu(刘恩克)4,5, Lingwei Li(李领伟)1,2
1 Institute of Advanced Magnetic Materials, School of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China;
2 Key Laboratory of Electromagnetic Processing of Materials(Ministry of Education), Northeastern University, Shenyang 110819, China;
3 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China;
4 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM (TM=Fe, Ni, Cu) were investigated by the first-principles calculations based on density-functional theory. The results indicate that all three alloys are stabilized in the ferromagnetic L21-type structure. The total magnetic moments mainly come from Mn and Fe atoms for Cd2MnFe, whereas, only from Mn atoms for Cd2MnNi and Cd2MnCu. The magnetic moment at equilibrium lattice constant of Cd2MnFe (6.36 μB) is obviously larger than that of Cd2MnNi (3.95 μB) and Cd2MnCu (3.82 μB). The large negative energy differences (ΔE) between martensite and austenite in Cd2MnFe and Cd2MnNi under tetragonal distortion and different uniform strains indicate the possible occurrence of ferromagnetic martensitic transformation (FMMT). The minimum total energies in martensitic phase are located with the c/a ratios of 1.41 and 1.33 for Cd2MnFe and Cd2MnNi, respectively. The total moments in martensitic state still maintain large values compared with those in cubic state. The study is useful to find the new all-d-metal Heusler alloys with FMMT.
Keywords:  all-d-metal Heusler-like alloys      electronic structures      magnetic properties      martensitic transformation  
Received:  28 February 2020      Revised:  07 May 2020      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  31.15.A- (Ab initio calculations)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  75.20.En (Metals and alloys)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ19E010006), the National Natural Science Foundation of China (Grant Nos. 51671048 and 91963123), the Ten Thousand Talents Plan of Zhejiang Province, China (Grant No. 2018R52003), and the Fundamental Research Funds for the Provincial University of Zhejiang Province, China (Grant No. GK199900X022).
Corresponding Authors:  Lingwei Li     E-mail:  lingwei@hdu.edu.cn

Cite this article: 

Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟) Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu) 2020 Chin. Phys. B 29 087101

[1] Webster P J, Ziebeck K R A, Town S L and Peak M S 1984 Philos. Mag. B 49 295
[2] Wang W H, Wu G H, Chen J L, Gao S X, Zhan W S, Wen G H and Zhang X X 2001 Appl. Phys. Lett. 79 1148
[3] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T and Ishida K 2006 Nature 439 957
[4] Ullakko K, Huang J K, Kokorin V V and O'Handley R C 1997 Scr. Mater. 36 1133
[5] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620
[6] Hu F, Shen B, Sun J and Wu G 2001 Phys. Rev. B 64 132412
[7] Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S and Acet M 2010 Nat. Mater. 9 478
[8] Nayak A K, Nicklas M, Chadov S, Khuntia P, Shekhar C, Kalache A, Baenitz M, Skourski Y, Guduru V K, Puri A, Zeitler U, Coey J M and Felser C 2015 Nat. Mater. 14 679
[9] Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B and Zhang X X 2006 Appl. Phys. Lett. 89 162503
[10] Singh S, Rawat R, Muthu S E, D'Souza S W, Suard E, Senyshyn A, Banik S, Rajput P, Bhardwaj S, Awasthi A M, Ranjan R, Arumugam S, Schlagel D L, Lograsso T A, Chakrabarti A and Barman S R 2012 Phys. Rev. Lett. 109 246601
[11] Cong D, Xiong W, Planes A, Ren Y, Mañosa L, Cao P, Nie Z, Sun X, Yang Z, Hong X and Wang Y 2019 Phys. Rev. Lett. 122 255703
[12] Wu M, Han Y, Bouhemadou A, Cheng Z, Khenata R, Kuang M, Wang X, Yang T, Yuan H and Wang X 2019 IUCrJ 6 218
[13] Zhao W Q, Dai X F, Zhang X M, Mo Z J, Wang X T, Chen G F, Cheng Z X and Liu G D 2019 IUCrJ 6 552
[14] Zhang Y J, Liu Z H, Wu Z G and Ma X Q 2019 IUCrJ 6 610
[15] Liu Z H, Tang Z J, Tan J G, Zhang Y J, Wu Z G, Wang X T, Liu G D and Ma X Q 2018 IUCrJ 5 794
[16] Li Y, Dai X, Liu G, Wei Z, Liu E, Han X, Du Z, Xi X, Wang W and Wu G 2018 Chin. Phys. B 27 026101
[17] Wang D, Wang C, Yu T and Liu W 2020 Chin. Phys. B 29 043103
[18] He C, Tang Y, Li X, He Y, Lu C and Guo Z 2019 Chin. Phys. B 28 117501
[19] Hao J, Hu F, Yu Z, Shen F, Zhou H, Gao Y, Qiao K, Li J, Zhang C, Liang W, Wang J, He J, Sun J and Shen B 2020 Chin. Phys. B 29 047504
[20] Wei Z Y, Liu E K, Chen J H, Li Y, Liu G D, Luo H Z, Xi X K, Zhang H G, Wang W H and Wu G H 2015 Appl. Phys. Lett. 107 022406
[21] Wei Z Y, Liu E K, Li Y, Han X L, Du Z W, Luo H Z, Liu G D, Xi X K, Zhang H W, Wang W H and Wu G H 2016 Appl. Phys. Lett. 109 071904
[22] Wei Z Y, Sun W, Shen Q, Shen Y, Zhang Y F, Liu E K and Liu J 2019 Appl. Phys. Lett. 114 101903
[23] Aznar A, Grácia-Condal A, Planes A, Lloveras P, Barrio M, Tamarit J L, Xiong W, Cong D, Popescu C and Mañosa L 2019 Phys. Rev. Mater. 3 044406
[24] Yu K, Liu K, Ma S, Han X, Zhang Z, Song Y, Zhang Y, Chen C, Luo X and Zhong Z 2019 J. Magn. Magn. Mater. 484 31
[25] Liu K, Ma S, Ma C, Han X, Yu K, Yang S, Zhang Z, Song Y, Luo X, Chen C, Rehman S U and Zhong Z 2019 J. Alloys Compd. 790 78
[26] Liu K, Han X, Yu K, Ma C, Zhang Z, Song Y, Ma S, Zeng H, Chen C, Luo X, Rehman S U and Zhong Z 2019 Intermetallics 110 106472
[27] Wang X, Cheng Z, Liu G, Dai X, Khenata R, Wang L and Bouhemadou A 2017 IUCrJ 4 758
[28] Duan J, Wang Y, Zhang A, Liu S and Dar S A 2019 Solid State Commun. 290 12
[29] Han Y, Wu M, Feng Y, Cheng Z, Lin T, Yang T, Khenata R and Wang X 2019 IUCrJ 6 465
[30] Ni Z, Ma Y, Liu X, Luo H, Liu H and Meng F 2018 J. Magn. Magn. Mater. 451 721
[31] Li L W 2016 Chin. Phys. B 25 037502
[32] Zhang Y K 2019 J. Alloys Compd. 787 1173
[33] Li L and Yan M 2020 J. Alloys Compd. 823 153810
[34] Han Y, Bouhemadou A, Khenata R, Cheng Z, Yang T and Wang X 2019 J. Magn. Magn. Mater. 471 49
[35] Yang T, You J, Hao L, Khenata R, Wang Z and Wang X 2020 J. Magn. Magn. Mater. 498 166188
[36] Vanderbilt D 1990 Phys. Rev. B 41 7892
[37] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.:Condenes. Matter 14 2717
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Graf T, Casper F, Winterlik J, Balke B, Fecher G H and Felser C 2009 Z. Anorg. Allg. Chem. 635 976
[40] Skaftouros S, Özdoǧan K, Şaşı oǧlu E and Galanakis I 2013 Phys. Rev. B 87 024420
[41] Tan J G, Liu Z H, Zhang Y J, Li G T, Zhang H G, Liu G D and Ma X Q 2019 Results Phys. 12 1182
[42] Zeng Q, Shen J, Zhang H, Chen J, Ding B, Xi X, Liu E, Wang W and Wu G 2019 J. Phys.:Condens. Matter 31 425401
[43] Chen J, Liu E, Qi X, Luo H, Wang W, Zhang H, Wang S, Cai J and Wu G 2014 Comp. Mater. Sci. 89 130
[44] Faleev S V, Ferrante Y, Jeong J, Samant M G, Jones B and Parkin S S P 2017 Phys. Rev. Appl. 7 034022
[45] Entel P, Siewert M, Gruner M E, Chakrabarti A, Barman S R, Sokolovskiy V V and Buchelnikov V D 2013 J. Alloys Compd. 577 S107
[46] Han Y, Wu M, Kuang M, Yang T, Chen X and Wang X 2018 Results Phys. 11 1134
[1] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[2] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[3] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[4] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[5] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[6] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[7] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[8] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[9] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[10] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[11] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[12] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[13] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[14] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[15] Electronic and magnetic properties of single-layer and double-layer VX2 (X=Cl, Br) under biaxial stress
Xing Li(李兴), Yanfeng Ge(盖彦峰), Jun Li(李军), Wenhui Wan(万文辉), and Yong Liu(刘永). Chin. Phys. B, 2021, 30(10): 107305.
No Suggested Reading articles found!