Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 060305    DOI: 10.1088/1674-1056/23/6/060305
GENERAL Prev   Next  

Efficient scheme for realizing quantum dense coding with GHZ state in separated low-Q cavities

Sun Qiana, He Juana b, Ye Liua
a School of Physics & Material Science, Anhui University, Hefei 230601, China;
b School of Physics & Electronics Science, Fuyang Normal College, Fuyang 236037, China
Abstract  We propose an efficient scheme for realizing quantum dense coding with three-particle GHZ state in separated low-Q cavities. In this paper, the GHZ state is first prepared with three atoms trapped, respectively, in three spatial separated cavities. Meanwhile, with the assistance of a coherent optical pulse and X-quadrature homodyne measurement, we can implement quantum dense coding with three-particle GHZ state with a higher probability. Our scheme can also be generalized to realize N-particle quantum dense coding.
Keywords:  GHZ state      quantum dense coding      low-Q cavity      X-quadrature homodyne measurement  
Received:  19 September 2013      Revised:  28 November 2013      Published:  15 June 2014
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074002 and 61275119), the Doctoral Foundation of the Ministry of Education of China (Grant No. 20103401110003), and the Natural Science Research Project of Education Department of Anhui Province, China (Grant Nos. KJ2013A205, KJ2011ZD07, and KJ2012Z309).
Corresponding Authors:  Ye Liu     E-mail:  yeliu@ahu.edu.cn

Cite this article: 

Sun Qian, He Juan, Ye Liu Efficient scheme for realizing quantum dense coding with GHZ state in separated low-Q cavities 2014 Chin. Phys. B 23 060305

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Man Z X and Xia Y J 2008 Chin. Phys. B 17 4375
[5] Chen M F 2006 Chin. Phys. 15 2847
[6] Wang J, Yu L B and Ye L 2007 Chin. Phys. 16 2211
[7] Guo G C and Zhang Y S 2002 Phys. Rev. A 65 054302
[8] Zou X B and Mathis W 2005 Phys. Rev. A 72 013809
[9] Deng Z J, Feng M and Gao K L 2006 Phys. Rev. A 73 014302
[10] Hagley E, Maitre X, Nogues G, Wunderlich C, Brune M, Raimand J M and Haroche S 1997 Phys. Rev. Lett. 79 03502
[11] Gorbachev V N, Trubilko A I and Rodichkina A A 2003 Phys. Lett. A 314 267
[12] Jin G S, Li S S, Feng S L and Zheng H Z 2004 Phys. Rev. A 69 034302
[13] Zha X W and Zhang C M 2008 Acta Phys. Sin. 57 1339 (in Chiense)
[14] Zhang B L, Meng X G and Wang J S 2012 Chin. Phys. B 21 030304
[15] Gao G L, Song F Q, Huang S S, Wang H, Yuan X Z, Wang M F and Jiang N Q 2012 Chin. Phys. B 21 044209
[16] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[17] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[18] Li X, Pan Q, Jing J, Zhang J, Xie C and Peng K 2002 Phys. Rev. Lett. 88 047904
[19] Fang X, Zhu X, Feng M, Mao X and Du F 2000 Phys. Rev. A 61 022307
[20] Hao J C, Li C F and Guo G C 2001 Phys. Rev. A 63 054301
[21] Lee H J, Ahn D and Hwang S W 2002 Phys. Rev. A 66 024304
[22] Hao J C, Li C F and Guo G C 2000 Phys. Lett. A 278 113
[23] Lin X M, Zhou Z W, Xue P, Gu Y J and Guo G C 2003 Phys. Lett. A 313 351
[24] Ye L and Guo G C 2005 Phys. Rev. A 71 034304
[25] Ye L and Yu L B 2005 Phys. Lett. A 346 330
[26] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[27] DÄur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[28] Acín A, Bruß D, Lewenstein M and Sanpera A 2011 Phys. Rev. Lett. 87 040401
[29] Sim S, Jin J and Kwon Y 2005 Int. J. Theor. Phys. 44 1419
[30] Guo Q, Cheng L Y, Wang H F, Zhang S and Yeon K H 2012 Opt. Commun. 285 1571
[31] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[32] Wang X W, Zhang D Y, Tang S Q, Xie L J, Wang Z Y and Kuang L M 2012 Phys. Rev. A 85 052326
[33] Chen X D, Xiao S J, Gu Y J and Lin X M 2010 Acta Phys. Sin. 59 5251 (in Chiense)
[34] Ye L and Guo G C 2002 Chin. Phys. 11 996
[35] Yu C S, Yi X X, Song H S and Mei D 2007 Phys. Rev. A 75 044301
[36] Su S L, Guo Q, Zhu L, Wang H F and Zhang S 2012 J. Opt. Soc. Am. B 29 002827
[37] He J, Ye L and Ni Z X 2008 Chin. Phys. B 17 1597
[38] Zhu M Z, Zhao C R and Ye L 2011 Opt. Commun. 284 5394
[39] Zhao C R and Ye L 2011 Opt. Commun. 284 541
[40] Zhao C R and Ye L 2011 Phys. Lett. A 375 401
[41] Gao M, Hu W H and Li C Z 2007 J. Phys. B: At. Mol. Opt. Phys. 40 3525
[42] Jin G S, Lin Y and Wu B 2007 Phys. Rev. A 75 054302
[43] Zhu M Z and Yin X G 2013 J. Opt. Soc. Am. B 30 355
[44] Mei F, Yu Y F, Feng X L, Zhu S L and Zhang Z M 2010 Europhys. Lett. 91 10001
[45] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag) p. 124
[46] Zhao C R, Zhu M Z and Ye L 2011 J. Opt. Soc. Am. B 28 1740
[47] Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
[48] Riebe M, Häffner H, Roos C F, Hänsel W, Benhelm J, Lancaster G P T, Körber T W, Becher C, Schmidt-Kaler F, James D F V and Blatt R 2004 Nature 429 734
[49] Fortier K M, Kim S Y, Gibbons M J, Ahmadi P and Chapman M S 2007 Phys. Rev. Lett. 98 233601
[50] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[51] Wei H, Yang W L, Deng Z J and Feng M 2008 Phys. Rev. A 78 014304
[52] Mei F, Feng M, Yu Y F and Zhang Z M 2009 Phys. Rev. A 80 042319
[53] Fortier K M, Kim S Y, Gibbons M J, Ahmadi P and Chapman M S 2007 Phys. Rev. Lett. 98 233601
[54] Numann S, Hijlkema M, Weber B, Rohde F, Rempe G and Kuhn A 2005 Phys. Rev. Lett. 95 173602
[55] Su S L, Cheng L Y, Wang H F and Zhang S 2013 Opt. Commun. 293 172
[56] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[57] Polzik E S, Carri J and Kimble H J 1992 Phys. Rev. Lett. 68 3020
[58] Rosenfeld W, Hocke F, Henkel F, Krug M, Volz J, Weber M and Weinfurter H 2008 Phys. Rev. Lett. 101 260403
[59] Chen Q and Feng M 2009 Phys. Rev. A 79 064304
[60] An J H, Feng M and Oh C H 2009 Phys. Rev. A 79 032303
[1] Effects of intrinsic decoherence on various correlations and quantum dense coding in a two superconducting charge qubit system
Wang Fei, Maimaitiyiming-Tusun, Parouke-Paerhati, Ahmad-Abliz. Chin. Phys. B, 2015, 24(9): 090307.
[2] Decay of N-qubit GHZ states in Pauli channels
Chen Xiao-Yu, Wang Ting-Ting. Chin. Phys. B, 2015, 24(8): 080303.
[3] Nonlocal multi-target controlled—controlled gate using Greenberger–Horne–Zeilinger channel and qutrit catalysis
Chen Li-Bing, Lu Hong. Chin. Phys. B, 2015, 24(7): 070307.
[4] Resonant interaction scheme for GHZ state preparation and quantum phase gate with superconducting qubits in a cavity
Liu Xin, Liao Qing-Hong, Fang Guang-Yu, Wang Yue-Yuan, Liu Shu-Tian. Chin. Phys. B, 2014, 23(2): 020311.
[5] Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise
Chen Zhong-Fang, Liu Jin-Ming, Ma Lei. Chin. Phys. B, 2014, 23(2): 020312.
[6] Deterministic joint remote state preparation of arbitrary two- and three-qubit states
Wang Yuan, Ji Xin. Chin. Phys. B, 2013, 22(2): 020306.
[7] Knotted pictures of the GHZ states on the surface of trivial torus
Gu Zhi-Yu, Qian Shang-Wu. Chin. Phys. B, 2012, 21(7): 070201.
[8] Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state
Wang Mei-Yu, Yan Feng-Li. Chin. Phys. B, 2011, 20(12): 120309.
[9] A nearly deterministic scheme for generation of multiphoton GHZ states with weak cross-Kerr nonlinearity
Wang Yi, Ye Liu, Fang Bao-Long. Chin. Phys. B, 2011, 20(10): 100313.
[10] Generation of GHZ state and cluster state with atomic ensembles via the dipole–blockade mechanism
Ni Bin-Bin, Gu Yong-Jian, Chen Xiao-Dong, Liang Hong-Hui, Lin Xiu, Lin Xiu-Min. Chin. Phys. B, 2010, 19(9): 090316.
[11] Generation of entangled coherent states through cavity-assisted interaction
Chen Xiao-Dong, Gu Yong-Jian, Liang Hong-Hui, Ni Bin-Bin, Lin Xiu-Min. Chin. Phys. B, 2010, 19(4): 040310.
[12] Probabilistic and robust preparation of a GHZ-type state via atomic ensembles and linear optics
Lu Xiao-Song, Shi Bao-Sen, Guo Guang-Can. Chin. Phys. B, 2009, 18(12): 5133-5138.
[13] Scheme for implementing quantum dense coding with W-class state in cavity QED
He Juan, Ye Liu, Ni Zhi-Xiang. Chin. Phys. B, 2008, 17(5): 1597-1600.
[14] Generation of atomic Greenberger-Horne-Zeilinger states and cluster states through cavity-assisted interaction
Huang Xiu-Hua, Lin Xiu-Min, Lin Gong-Wei, Chen Zhi-Hua, Tang Yao-Xiang. Chin. Phys. B, 2008, 17(12): 4382-4387.
[15] Generation of four-particle GHZ states in bimodal cavity QED
Yang Zhen-Biao. Chin. Phys. B, 2007, 16(7): 1963-1970.
No Suggested Reading articles found!