|
|
Using a quantum dot system to realize perfect state transfer |
Li Ji, Wu Shi-Hai, Zhang Wen-Wen, Xi Xiao-Qiang |
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710061, China |
|
|
Abstract There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297] where a quantum dot system is used to realize quantum communication. To overcome these disadvantages, we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST). First, we calculate the interaction relation for PQST in the spin chain. Second, we review the interaction between the quantum dots in the Heitler-London approach. Third, we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST.
|
Received: 27 January 2011
Published: 15 October 2011
|
: |
03.67.Hk
|
(Quantum communication)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
73.63.Kv
|
(Quantum dots)
|
|
Fund:Project supported by the Natural Science Foundation of Shaanxi Province of China (Grant No. 2009JQ8006). |
|
|
|
[1] |
Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297
|
[2] |
Petrosyan D and Lambropoulos P 2006 Opt. Commun. 264 419
|
[3] |
Bose S 2003 Phys. Rev. Lett. 91 207901
|
[4] |
Li Y, Shi T, Chen B, Song Z and Sun C P 2005 Phys. Rev. A 71 022301
|
[5] |
Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
|
[6] |
Osborne T J and Linden N 2004 Phys. Rev. A 69 052315
|
[7] |
Kostak V, Nikolopoulos G M and Jex I 2007 Phys. Rev. A 75 042319
|
[8] |
Xi X Q, Gong J B, Zhang T, Yue R H and Liu W M 2008 Eur. Phys. J. D 50 193
|
[9] |
Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
|
[10] |
Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski M, Wasilewski Z R, Stern O and Forchel A 2001 Science 291 451
|
[11] |
Santori C, Tamarat P, Neumann P, Wrachtrup J, Fattal D, Beausoleil R G, Rabeau J, Olivero P, Greentree A D, Prawer S, Jelezko F and Hemmer P 2006 Phys. Rev. Lett. 97 247401
|
[12] |
Neumann P, Kolesov R, Naydenov B, Beck J, Rempp F, Steiner M, Jacques V, Balasubramanian G, Markham M L, Twitchen D J, Pezzagna S, Meijer J, Twamley J, Jelezko F and Wrachtrup J 2010 Nature Phys. 6 249
|
[13] |
Burkard G and Loss D 1999 Phys. Rev. B 59 2070
|
[14] |
Amasha S, MacLean K, Radu Iuliana P, Zumbühl D M, Kastner M A, Hanson M P and Gossard A C 2008 Phys. Rev. Lett. 100 046803
|
[15] |
Koppens F H L, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L P and Vandersypen L M K 2005 Nature 442 766
|
[16] |
Nowack K C, Koppens F H L, Nazarov Y V and Vandersypen L M K 2007 Science 318 1430
|
[17] |
Mikkelsen M H, Berezovsky J, Stoltz N G, Coldren L A and Awschalom D D 2007 Nature Phys. 3 770
|
[18] |
Press D, Ladd T D, Zhang B Y and Yamamoto Y 2008 Nature 456 218
|
[19] |
Elzerman J M, Hanson R, Willems van Beveren L H, Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431
|
[20] |
Hanson R, Willems van Beveren L H, Vink I T, Elzerman J M, Naber W J M, Koppens F H L, Kouwenhoven L P and Vandersypen L M K 2005 Phys. Rev. Lett. 94 196802
|
[21] |
Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
|
[22] |
Sanderson K 2009 Nature 459 760
|
[23] |
Hanson R and Awschalom David D 2008 Nature 453 1043
|
[24] |
Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2008 Rev. Mod. Phys. 79 1217
|
[25] |
Mattis D C 1965 The Theory of Magnetism (New York: Harper and Row)
|
[26] |
Bennett C H, DiVincenzo D P, Bacon D, Burkard G and Whaley K B 2000 Nature 408 339
|
[27] |
Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A and Wootters K 1993 Phys. Rev. Lett. 70 1895
|
[28] |
Herring C 1962 Rev. Mod. Phys. 34 4
|
[1] |
Yan Li, Shu-Xiao Li, Hai-Ou Lidag, Guang-Wei Deng, Gang Cao, Ming Xiao, Guo-Ping Guo. Charge noise acting on graphene double quantum dots in circuit quantum electrodynamics architecture[J]. Chin. Phys. B, 2018, 27(7): 76105-076105. |
[2] |
Kui-Ying Li, Lun Ren, Tong-De Shen. Enhanced transient photovoltaic characteristics of core-shell ZnSe/ZnS/L-Cys quantum-dot-sensitized TiO2 thin-film[J]. Chin. Phys. B, 2018, 27(6): 67305-067305. |
[3] |
Qun-Yong Zhang, Ping Xu, Shi-Ning Zhu. Quantum photonic network on chip[J]. Chin. Phys. B, 2018, 27(5): 54207-054207. |
[4] |
Xue Li, Da-Wei He, Yong-Sheng Wang, Yin Hu, Xuan Zhao, Chen Fu, Jing-Yan Wu. Facile and controllable synthesis of molybdenum disulfide quantum dots for highly sensitive and selective sensing of copper ions[J]. Chin. Phys. B, 2018, 27(5): 56104-056104. |
[5] |
Xin Zhang, Hai-Ou Li, Ke Wang, Gang Cao, Ming Xiao, Guo-Ping Guo. Qubits based on semiconductor quantum dots[J]. Chin. Phys. B, 2018, 27(2): 20305-020305. |
[6] |
Yuan Li, Fei Ding, Oliver G Schmidt. Entangled-photons generation with quantum dots[J]. Chin. Phys. B, 2018, 27(2): 20307-020307. |
[7] |
Jing Tang, Xiu-Lai Xu. Magneto-optical properties of self-assembled InAs quantum dots for quantum information processing[J]. Chin. Phys. B, 2018, 27(2): 27804-027804. |
[8] |
Lu Zhang, Yongsheng Wang, Yanfang Dong, Xuan Zhao, Chen Fu, Dawei He. Facilitative effect of graphene quantum dots in MoS2 growth process by chemical vapor deposition[J]. Chin. Phys. B, 2018, 27(1): 18101-018101. |
[9] |
Shuaipu Zang, Yinglin Wang, Meiying Li, Wei Su, Meiqi An, Xintong Zhang, Yichun Liu. Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al2O3 interlayer[J]. Chin. Phys. B, 2018, 27(1): 18503-018503. |
[10] |
Huiyun Wei, Dongmei Li, Xinhe Zheng, Qingbo Meng. Recent progress of colloidal quantum dot based solar cells[J]. Chin. Phys. B, 2018, 27(1): 18808-018808. |
[11] |
Qin Liao, Ying Guo, Duan Huang. Cancelable remote quantum fingerprint templates protection scheme[J]. Chin. Phys. B, 2017, 26(9): 90302-090302. |
[12] |
Kang-Kang Ju, CuiXian Guo, Xiao-Yin Pan. Magnetpolaron effect in two-dimensional anisotropic parabolic quantum dot in a perpendicular magnetic field[J]. Chin. Phys. B, 2017, 26(9): 97103-097103. |
[13] |
Jiao-Jiao Liu, Qi Chang, Mei-Mei Bao, Bing Yuan, Kai Yang, Yu-Qiang Ma. Silicon quantum dots delivered phthalocyanine for fluorescence guided photodynamic therapy of tumor[J]. Chin. Phys. B, 2017, 26(9): 98102-098102. |
[14] |
Yong-Chen Xiong, Jun Zhang, Wang-Huai Zhou, Amel Laref. Voltage-controlled Kosterlitz-Thouless transitions and various kinds of Kondo behaviors in a triple dot device[J]. Chin. Phys. B, 2017, 26(9): 97102-097102. |
[15] |
Ranber Singh, Rajiv Kumar, Vikramjeet Singh. Optical anisotropy and the direction of polarization of exciton emissions in a semiconductor quantum dot:Effect of heavy- and light-hole mixing[J]. Chin. Phys. B, 2017, 26(8): 87303-087303. |
|
|
|
|