Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 056105    DOI: 10.1088/1674-1056/ac3986
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study

Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍)
College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China
Abstract  The alloying and magnetic disordering effects on site occupation, elastic property, and phase stability of Co$_{2}Y$Ga ($Y={\rm Cr}$, V, and Ni) shape memory alloys are systematically investigated using the first-principles exact muffin-tin orbitals method. It is shown that with the increasing magnetic disordering degree $y$, their tetragonal shear elastic constant $C'$ (i.e., $(C_{11}-C_{12})/2$) of the $L2_{1}$ phase decreases whereas the elastic anisotropy $A$ increases, and upon tetragonal distortions the cubic phase gets more and more unstable. Co$_{2}$CrGa and Co$_{2}$VGa alloys with $y\geq0.2$ thus can show the martensitic transformation (MT) from $L2_{1}$ to $D0_{22}$ as well as Co$_{2}$NiGa. In off-stoichiometric alloys, the site preference is controlled by both the alloying and magnetic effects. At the ferromagnetism state, the excessive Ga atoms always tend to take the $Y$ sublattices, whereas the excessive Co atom favor the $Y$ sites when $Y={\rm Cr}$, and the excessive $Y$ atoms prefer the Co sites when $Y={\rm Ni}$. The Ga-deficient $Y={\rm V}$ alloys can also occur the MT at the ferromagnetism state by means of Co or V doping, and the MT temperature $T_{\rm M}$ should increase with their addition. In the corresponding ferromagnetism $Y={\rm Cr}$ alloys, nevertheless, with Co or Cr substituting for Ga, the reentrant MT (RMT) from $D0_{22}$ to $L2_{1}$ is promoted and then $T_{\rm M}$ for the RMT should decrease. The alloying effect on the MT of these alloys is finally well explained by means of the Jahn-Teller effect at the paramagnetic state. At the ferromagnetism state, it may originate from the competition between the austenite and martensite about their strength of the covalent banding between Co and Ga as well as $Y$ and Ga.
Keywords:  first-principles      martensitic transformation      elastic modulus      magnetic ordering      shape memory alloys  
Received:  24 June 2021      Revised:  14 October 2021      Accepted manuscript online: 
PACS:  61.66.Dk (Alloys )  
  62.20.de (Elastic moduli)  
  63.20.dk (First-principles theory)  
  64.70.K-  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos.12174269,11674233 and 51301176),the China Postdoctoral Science Foundation (Grant Nos.2013M530133 and 2014T70264),and the Natural Science Foundation of Liaoning Province,China (Grant Nos.2019-MS-287 and L201602672).
Corresponding Authors:  Chun-Mei Li,E-mail:cmli@synu.edu.cn     E-mail:  cmli@synu.edu.cn
About author:  2021-11-15

Cite this article: 

Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍) Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study 2022 Chin. Phys. B 31 056105

[1] Wuttig M, Li J and Craciunescu C 2001Scr. Mater. 44 2393
[2] Arróyave R, Junkaew A, Chivukula A, Bajaj S, Yao C Y and Garay A 2010Acta Mater. 58 5220
[3] Xu X, Nagasako M, Kataoka M, Umetsu R Y, Omori T, Kanomata T and Kainuma R 2015Phys. Rev. B 91 104434
[4] Odaira T, Xu X, Miyake A, Omori T, Tokunaga M and Kainuma R 2018Scr. Mater. 153 35
[5] Liu C Q, Li Z, Zhang Y L, Huang Y S, Ye M F, Sun X D, Zhang G J, Cao Y M, Xu K and Jing C 2018Appl. Phys. Lett. 112 211903
[6] Xu X, Nagashima A, Nagasako M, Omori T, Kanomata T and Kainuma R 2017Appl. Phys. Lett. 110 121906
[7] Obaidallah A, Algethami A, Zhang Q Q, Tan J G, Wang X T, Liu Z H and Ma X Q 2020J. Magn. Magn. Mater. 498 166252
[8] Huang Y, Jing C, Li J, Zhang Y, Zhang G and Qin N 2020J. Magn. Magn. Mater. 513 167059
[9] Li C M, Zhou J P, Yang S J and Zhang Y 2021Comput. Mater. Sci. 196 110527
[10] Jiang H X, Xu X, Omori T, Nagasako M, Ruan J J, Yang S Y, Wang C P, Liu X J and Kainuma R 2016Mater. Sci. Eng. A 676 191
[11] Jiang H X, Wang C P, Xu W W, Xu X, Yang S Y, Kainuma R and Liu X J 2017Mater. Des. 116 300
[12] Xu X, Omori T, Nagasako M, Okubo A, Umetsu R Y, Kanomata T, Ishida K and Kainuma R 2013Appl. Phys. Lett. 103 164104
[13] Siewert M, Gruner M E, Dannenberg A, Hucht A, Shapiro S M, Xu G, Schlagel D L, Lograsso T A and Entel P 2010Phys. Rev. B 82 064420
[14] Singh N, Dogan E, Karaman I and Arróyave R 2011Phys. Rev. B 84 184201
[15] Dogan E, Karaman I, Singh N, Chivukula A, Thawabi H S and Arróyave R 2012Acta Mater. 60 3545
[16] Talapatra A, Arróyave R, Entel P, Valencia-Jaime I and Romero A H 2015Phys. Rev. B 92 054107
[17] Sahay S and Goswami B 2009Solid State Phenom. 150 197
[18] Craciunescu C, Kishi Y, Lograsso T A and Wutting M 2002Scr. Mater. 47 285
[19] Li Y, Xin Y, Chai L, Ma Y and Xu H 2010Acta Mater. 58 3655
[20] Xu X, Omori T, Nagasako M, Kanomata T and Kainuma R 2015Appl. Phys. Lett. 107 181904
[21] Xin Y, Li Y, Jiang C B and Xu H B 2005Mater. Sci. Forum 475-479 1991
[22] Seguí C, Pons J and Cesari E 2007Acta Mater. 55 1649
[23] Hu Q M, Luo H B, Li C M, Vitos L and Yang R 2012Sci. China Tech. Sci. 55 295
[24] Chen J, Li Y, Shang J X and Xu H B 2006Appl. Phys. Lett. 89 231921
[25] Bungaro C, Rabe K M and Corso A Dal 2003Phys. Rev. B 68 134104
[26] Stipcich M, Mañosa L, Planes A, Morin M, Zarestky J, Lograsso T and Stassis C 2004Phys. Rev. B 70 054115
[27] Banik S, Ranjan R, Chakrabarti A, Bhardwaj S, Lalla N P, Awasthi A M, Sathe V, Phase D M, Mukhopadhyay P K, Pandey D and Barman S R 2007Phys. Rev. B 75 104107
[28] Lanska N, Söderberg O, Sozinov A, Ge Y, Ullakko K and Lindroos V K 2004J. Appl. Phys. 95 8074
[29] Li C M, Luo H B, Hu Q M, Yang R, Johansson B and Vitos L 2012Phys. Rev. B 86 214205
[30] Opeil C P, Mihaila B, Schulze R K, Mañosa L, Planes A, Hults W L, Fisher R A, Riseborough P S, Littlewood P B, Smith J L and Lashley J C 2008Phys. Rev. Lett. 100 165703
[31] Godlevsky V V and Rabe K M 2001Phys. Rev. B 63 134407
[32] Vitos L 2007Computational Quantum Mechanics for Materials Engineers (London: Springer-Verlag)
[33] Andersen O K, Jepsen O and Krier G 1994Lectures on Methods of Electronic Structure Calculations (Singapore: World Scientific) pp. 63-124
[34] Vitos L, Skriver H L, Johansson B and Kollár J 2000Comput. Mater. Sci. 18 24
[35] Vitos L 2001Phys. Rev. B 64 014107
[36] Zwierzycki M and Andersen O K 2009Acta Phys. Pol. A 115 64
[37] Kollár J, Vitos L and Skriver H L 2000Electronic Structure and Physical Properties of Solids: The Uses of the LMTO Method (Berlin: Springer-Verlag) p. 85
[38] Soven P 1967Phys. Rev. 156 809
[39] Vitos L, Abrikosov I A and Johansson B 2001Phys. Rev. Lett. 87 156401
[40] Györffy B L 1972Phys. Rev. B 5 2382
[41] Vitos L, Korzhavyi P A and Johansson B 2003Nat. Mater. 2 25
[42] Kim D Y, Hong J and Vitos L 2014Phys. Rev. B 90 144413
[43] Li C M, Yang R, Johansson B and Vitos L 2016Phys. Rev. B 94 214108
[44] Li C M, Hu Y F, Feng W J and Huang R Z 2018Phys. Rev. B 98 224107
[45] Li C M, Zhang Y, Feng W J, Huang R Z and Gao M 2020Phys. Rev. B 101 054106
[46] Perdew J P, Burke K and Ernzerhof M 1996Phys. Rev. Lett. 77 3865
[47] Moruzzi V L, Janak J F and Schwarz K 1988Phys. Rev. B 37 790
[48] Li C M, Hu Q M, Yang R, Johansson B and Vitos L 2010Phys. Rev. B 82 094201
[49] Skubic B, Hellsvik J, Nordström L and Eriksson O 2008J. Phys.: Condens. Matter 20 315203
[50] Antropov V P, Katsnelson M I, Harmon B N, Schilfgaarde M van and Kusnezov D 1996Phys. Rev. B 54 1019
[51] García-Palacios J L and Lázaro F J 1997Phys. Rev. B 55 1006
[52] Watson R E, Blume M and Vineyard G H 1969Phys. Rev. 181 811
[53] Bergman A, Taroni A, Bergqvist L, Hellsvik J, Hjörvarsson B and Eriksson O 2010Phys. Rev. B 81 144416
[54] Liechtenstein A, Katsnelson M I and Gubanov V A 1984J. Phys. F: Met. Phys. 14 L125
[55] Liechtenstein A, Katsnelson M I, Antropov V P and Gubanov V A 1987J. Magn. Magn. Mater. 67 65
[56] Staunton J, Gyöffy B L, Pindor A J, Stocks G M and Winter H 1984J. Magn. Magn. Mater. 45 15
[57] Dutta B, Bhandary S, Ghosh S and Sanyal B 2012Phys. Rev. B 86 024419
[58] Steinle-Neumann G, Stixrude L and Cohen R E 1999Phys. Rev. B 60 791
[59] Buschow K H J, Engen P G van and Jongebreur R 1983J. Magn. Magn. Mater. 38 1
[60] Umetsu R Y, Kobayashi K, Kainuma R, Fujita A and Fukamichi K 2004Appl. Phys. Lett. 85 2011
[61] Umetsu R Y, Kobayashi K, Kainuma R, Yamaguchi Y, Ohoyama K, Sakuma A and Ishida K 2010J. Alloys Compd. 499 1
[62] Hamad B 2014J. Appl. Phys. 115 113905
[63] Ram S, Chauhan M R, Agarwal K and Kanchana V 2011Phil. Mag. Lett. 91 545
[64] Schroeder K, Waybright J, Kharel P, Zhang W, Valloppilly S, Herran J, Lukashev P, Huh Y, Skomski R and Sellmyer D J 2018AIP Adv. 8 056431
[65] Buschow K H J and Engen P G van 1981J. Magn. Magn. Mater. 25 90
[66] Kanomata T, Chieda Y, Endo K, Okada H, Nagasako M, Kobayashi K, Kainuma R, Umetsu R Y, Takahashi H, Furutani Y, Nishihara H, Abe K, Miura Y and Shirai M 2010Phys. Rev. B 82 144415
[67] Webster P J and Ziebeck K R A 1973J. Phys. Chem. Solid. 34 1647
[68] Bentouaf A, Mebsout R and Aïssa B 2019J. Alloys Compd. 771 1062
[69] Faure P, Deslandes B, Bazin D, Tailland C, Doukhan R, Fournier J M and Falanga A 1996J. Alloys Compd. 244 131
[70] Webster P J, Ziebeck K R A, Town S L and Peak M S 1984Philos. Mag. B 49 295
[71] Punkkinen M P J, Kwon S K, Kollár J, Johansson B and Vitos L 2011Phys. Rev. Lett. 106 057202
[72] Roy T, Pandey D and Chakrabarti A 2016Phys. Rev. B 93 184102
[1] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[2] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[3] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[4] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[5] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[6] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[7] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[8] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[11] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[12] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[13] High-temperature nodal ring semimetal in two-dimensional honeycomb-kagome Mn2N3 lattice
Xin-Ke Liu(刘鑫柯), Xin-Yang Li(李欣阳), Miao-Juan Ren(任妙娟),Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127203.
[14] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[15] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
No Suggested Reading articles found!