CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural and thermodynamic properties of inhomogeneous fluids in rectangular corrugated nano-pores |
Yanshuang Kang(康艳霜)1,2, Haijun Wang(王海军)1,3,4,†, and Zongli Sun(孙宗利)5,‡ |
1 College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; 2 College of Science, Hebei Agricultural University, Baoding 071001, China; 3 Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; 4 Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China; 5 Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China |
|
|
Abstract Based on the free-energy average method, an area-weighted effective potential is derived for rectangular corrugated nano-pore. With the obtained potential, classical density functional theory is employed to investigate the structural and thermodynamic properties of confined Lennard-Jones fluid in rectangular corrugated slit pores. Firstly, influence of pore geometry on the adsorptive potential is calculated and analyzed. Further, thermodynamic properties including excess adsorption, solvation force, surface free energy and thermodynamic response functions are systematically investigated. It is found that pore geometry can largely modulate the structure of the confined fluids, which in turn influences other thermodynamic properties. In addition, the results show that different geometric elements have different influences on the confined fluids. The work provides an effective route to investigate the effect of roughness on confined fluids. It is expected to shed light on further understanding about interfacial phenomena near rough walls, and then provide useful clues for the design and characterization of novel materials.
|
Received: 06 September 2021
Revised: 24 November 2021
Accepted manuscript online:
|
PACS:
|
61.20.Gy
|
(Theory and models of liquid structure)
|
|
62.10.+s
|
(Mechanical properties of liquids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.21503077),the Fundamental Research Fund for the Central Universities of China (Grant No.2020MS147),and the Science and Technology Project of Hebei Education Department,China (Grant No.QN2018119). |
Corresponding Authors:
Haijun Wang,E-mail:whj@hbu.edu.cn;Zongli Sun,E-mail:sunzl@ncepu.edu.cn
E-mail: whj@hbu.edu.cn;sunzl@ncepu.edu.cn
|
About author: 2021-12-11 |
Cite this article:
Yanshuang Kang(康艳霜), Haijun Wang(王海军), and Zongli Sun(孙宗利) Structural and thermodynamic properties of inhomogeneous fluids in rectangular corrugated nano-pores 2022 Chin. Phys. B 31 056104
|
[1] Zhang S, Wei K, Xiao Y, Ma X H, Zhang Y C, Liu G G, Lei T M, Zheng Y K, Huang S, Wang N, Asif M and Liu X Y 2018Chin. Phys. B 27 097309 [2] Sun C Z, Zhou R F, Zhao Z X and Bai B F 2020J. Phys. Chem. Lett. 11 4678 [3] Davis M E 2002Nature 417 813 [4] Thommes M and Cychosz K A 2014Adsorption 20 233 [5] Alothman Z A 2012Materials 5 2874 [6] Liu P S and Chen G F 2014Porous Materials: Processing and Applications (New York: Elsevier) [7] Yang H Q, Xu Z H, Fan M H, Gupta R, Slimane R B, Bland A E and Wright I 2008J. Environ. Sci. 20 14 [8] Sanz-Pérez E S, Murdock C R, Didas S A and Jones C W 2016Chem. Rev. 116 11840 [9] Choi S, Drese J H and Jones C W 2009Chem. Sus. Chem. 2 796 [10] Wilms D, Winkler A, Virnau P and Binder K 2010Phys. Rev. Lett. 105 045701 [11] Schneider D, Kondrashova D and Valiullin R 2017Sci. Rep. 7 7216 [12] Krekelberg W P, Siderius D W, Shen V K, Truskett T M and Errington J R 2013Langmuir 29 14527 [13] Liu Y, Lorusso D, Holdsworth D W, Poepping T L and de Bruyn J R 2018J. Non-Newton Fluid 261 25 [14] Shen Z Y, Farutin A, Thiébaud M and Misbah C 2017Phys. Rev. Fluids 2 103101 [15] Peng B and Yu Y X 2008Langmuir 24 12431 [16] Sun Z L, Kang Y S, Kang Y M, Liu Z C and Ma H X 2012Chin. Phys. B 21 066103 [17] Zhou Y Q and Stell G 1989Mol. Phys. 66 767 [18] Zhou Y Q and Stell G 1989Mol. Phys. 66 791 [19] Zhou Y Q and Stell G 1989Mol. Phys. 68 1265 [20] Frenkel D and Smit B 2002Understanding Molecular Simulation: from Algorithms to Applications (London: Academic Press) [21] Peterson B K and Gubbins K E 1987Mol. Phys. 62 215 [22] Magda J J, Tirrell M and Davis H T 1985J. Chem. Phys. 83 1888 [23] Li J, Wu K L, Chen Z X, Wang W Y, Yang B, Wang K, Luo J and Yu R J 2019Appl. Energy 251 113368 [24] Cui Z H, Fang H W, Huang L, Ni K and Reible D 2017J. Soils Sediments 17 2887 [25] Jagiello J, Kenvin J, Ania C O, Parra J B, Celzard A and Fierro V 2020Carbon 160 164 [26] Bojan M J and Steele W A 1988Surf. Sci. 199 L395 [27] Schoen M and Diestler D J 1997Phys. Rev. E 56 4427 [28] Bock H and Schoen M 1999Phys. Rev. E 59 4122 [29] Diestler D J and Schoen M 2000Phys. Rev. E 62 6615 [30] Porcheron F, Schoen M and Fuchs A H 2002J. Chem. Phys. 116 5816 [31] Wu H, Borhan A and Fichthorn K A 2010J. Chem. Phys. 133 054704 [32] Shahraz A, Borhan A and Fichthorn K A 2012Langmuir 28 14227 [33] Liu L M, Zeng Y H, Do D D, Nicholson D and Liu J J 2018Adsorption 24 1 [34] Malijevsky A and Parry A O 2013J. Phys.: Condens. Matter 25 305005 [35] Malijevsky A 2014J. Phys.: Condens. Matter 26 315002 [36] Malijevsky A and Parry A O 2019Phys. Rev. E 99 042804 [37] Malijevsky A 2019Phys. Rev. E 99 040801(R) [38] Malijevsky A and Parry A O 2014J. Phys.: Condens. Matter 26 355003 [39] Jagiello J and Olivier J P 2013Carbon 55 70 [40] Jagiello J and Jaroniec M 2018J. Colloid Interface Sci. 532 588 [41] Jagiello J and Kenvin J 2019J. Colloid Interface Sci. 542 151 [42] Yatsyshin P, Savva N and Kalliadasis S 2015J. Phys.: Condens. Matter 27 275104 [43] Yatsyshin P, Parry A O, Rascón C and Kalliadasis S 2018Mol. Phys. 116 1990 [44] Neimark A V, Lin Y, Ravikovitch P I and Thommes M 2009Carbon 47 1617 [45] Landers J, Gor G Y and Neimark A V 2013Colloids Surf. A Physicochem. Eng. Aspects 437 3 [46] Khlyupin A and Aslyamov T 2017J. Stat. Phys. 167 1519 [47] Khlyupin A and Aslyamov T 2021Phys. Rev. E 103 022104 [48] Forte E, Haslam A J, Jackson G and Müller E A 2014Phys. Chem. Chem. Phys. 16 19165 [49] Ravipati S, Galindo A, Jackson G and Haslam A J 2019Phys. Chem. Chem. Phys. 21 25558 [50] Shi K H, Santiso E E and Gubbins K E 2019Langmuir 35 5975 [51] Steele W A 1973Surf. Sci. 36 317 [52] Evans R 1979Adv. Phys. 28 143 [53] Barker J A and Henderson D 1967J. Chem. Phys. 47 4714 [54] Cotterman R L, Schwarz B J and Prausnitz J M 1986AIChE J. 32 1787 [55] Yu Y X and Wu J Z 2002J. Chem. Phys. 117 10156 [56] Sears M P and Frink L J D 2003J. Comput. Phys. 190 184 [57] Sauer E and Gross J 2017Ind. Eng. Chem. Res. 56 4119 [58] Yu Y X 2009J. Chem. Phys. 131 024704 [59] Peng B and Yu Y X 2008J. Phys. Chem. B 112 15407 [60] Liu Y, Liu H L, Hu Y and Jiang J W 2010J. Phys. Chem. B 114 2820 [61] Fu J, Liu Y, Tian Y and Wu J Z 2015J. Phys. Chem. C 119 5374 [62] Johnson J K, Zollweg J A and Gubbins K E 1993Mol. Phys. 78 591 [63] Carnahan N F and Starling K E 1969J. Chem. Phys. 51 635 [64] Sun Z L, Kang Y S and Kang Y M 2019Ind. Eng. Chem. Res. 58 15637 [65] Sun Z L, Kang Y S and Kang Y M 2019Chin. Phys. B 28 036102 [66] Snook I K and van Megen W 1980J. Chem. Phys. 72 2907 [67] Gardner L, Kruk M and Jaroniec M 2001J. Phys. Chem. B 105 12516 [68] Magda J J, Tirrell M and Davis H T 1985J. Chem. Phys. 83 1888 [69] Jagiello J, Ania C, Parra J B and Cook C 2015Carbon 91 330 [70] Balbuena P B, Berry D and Gubbins K E 1993J. Phys. Chem. 97 937 [71] Frink L J D and van Swol F 1998J. Chem. Phys. 108 5588 [72] Ghatak C and Ayappa K G 2004J. Chem. Phys. 120 9703 [73] Leroy F and Müller-Plathe F 2010J. Chem. Phys. 133 044110 [74] Evans R and Marconi U M B 1987J. Chem. Phys. 86 7138 [75] Quéré D 2008Annu. Rev. Mater. Res. 38 71 [76] Bridgman P W 1914Phys. Rev. 3 273 [77] Rowlinson J S and Swinton F L 1982Liquids and Liquid Mixtures (London: Butterworth) [78] Tang Y P and Lu B C Y 1997AIChE J. 43 2215 [79] Kolafa J and Nezbeda I 1994Fluid Phase Equilib. 100 1 [80] Mecke M, Müller A, Winkelmann J, Vrabec J, Fischer J, Span R and Wagner W 1996Int. J. Thermophys. 17 391 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|