Structural and thermodynamic properties of inhomogeneous fluids in rectangular corrugated nano-pores
Yanshuang Kang(康艳霜)1,2, Haijun Wang(王海军)1,3,4,†, and Zongli Sun(孙宗利)5,‡
1 College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; 2 College of Science, Hebei Agricultural University, Baoding 071001, China; 3 Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; 4 Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China; 5 Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
Abstract Based on the free-energy average method, an area-weighted effective potential is derived for rectangular corrugated nano-pore. With the obtained potential, classical density functional theory is employed to investigate the structural and thermodynamic properties of confined Lennard-Jones fluid in rectangular corrugated slit pores. Firstly, influence of pore geometry on the adsorptive potential is calculated and analyzed. Further, thermodynamic properties including excess adsorption, solvation force, surface free energy and thermodynamic response functions are systematically investigated. It is found that pore geometry can largely modulate the structure of the confined fluids, which in turn influences other thermodynamic properties. In addition, the results show that different geometric elements have different influences on the confined fluids. The work provides an effective route to investigate the effect of roughness on confined fluids. It is expected to shed light on further understanding about interfacial phenomena near rough walls, and then provide useful clues for the design and characterization of novel materials.
Fund: Project supported by the National Natural Science Foundation of China (Grant No.21503077),the Fundamental Research Fund for the Central Universities of China (Grant No.2020MS147),and the Science and Technology Project of Hebei Education Department,China (Grant No.QN2018119).
Yanshuang Kang(康艳霜), Haijun Wang(王海军), and Zongli Sun(孙宗利) Structural and thermodynamic properties of inhomogeneous fluids in rectangular corrugated nano-pores 2022 Chin. Phys. B 31 056104
[1] Zhang S, Wei K, Xiao Y, Ma X H, Zhang Y C, Liu G G, Lei T M, Zheng Y K, Huang S, Wang N, Asif M and Liu X Y 2018Chin. Phys. B27 097309 [2] Sun C Z, Zhou R F, Zhao Z X and Bai B F 2020J. Phys. Chem. Lett.11 4678 [3] Davis M E 2002Nature417 813 [4] Thommes M and Cychosz K A 2014Adsorption20 233 [5] Alothman Z A 2012Materials5 2874 [6] Liu P S and Chen G F 2014Porous Materials: Processing and Applications (New York: Elsevier) [7] Yang H Q, Xu Z H, Fan M H, Gupta R, Slimane R B, Bland A E and Wright I 2008J. Environ. Sci.20 14 [8] Sanz-Pérez E S, Murdock C R, Didas S A and Jones C W 2016Chem. Rev.116 11840 [9] Choi S, Drese J H and Jones C W 2009Chem. Sus. Chem.2 796 [10] Wilms D, Winkler A, Virnau P and Binder K 2010Phys. Rev. Lett.105 045701 [11] Schneider D, Kondrashova D and Valiullin R 2017Sci. Rep.7 7216 [12] Krekelberg W P, Siderius D W, Shen V K, Truskett T M and Errington J R 2013Langmuir29 14527 [13] Liu Y, Lorusso D, Holdsworth D W, Poepping T L and de Bruyn J R 2018J. Non-Newton Fluid261 25 [14] Shen Z Y, Farutin A, Thiébaud M and Misbah C 2017Phys. Rev. Fluids2 103101 [15] Peng B and Yu Y X 2008Langmuir24 12431 [16] Sun Z L, Kang Y S, Kang Y M, Liu Z C and Ma H X 2012Chin. Phys. B21 066103 [17] Zhou Y Q and Stell G 1989Mol. Phys.66 767 [18] Zhou Y Q and Stell G 1989Mol. Phys.66 791 [19] Zhou Y Q and Stell G 1989Mol. Phys.68 1265 [20] Frenkel D and Smit B 2002Understanding Molecular Simulation: from Algorithms to Applications (London: Academic Press) [21] Peterson B K and Gubbins K E 1987Mol. Phys.62 215 [22] Magda J J, Tirrell M and Davis H T 1985J. Chem. Phys.83 1888 [23] Li J, Wu K L, Chen Z X, Wang W Y, Yang B, Wang K, Luo J and Yu R J 2019Appl. Energy251 113368 [24] Cui Z H, Fang H W, Huang L, Ni K and Reible D 2017J. Soils Sediments17 2887 [25] Jagiello J, Kenvin J, Ania C O, Parra J B, Celzard A and Fierro V 2020Carbon160 164 [26] Bojan M J and Steele W A 1988Surf. Sci. 199 L395 [27] Schoen M and Diestler D J 1997Phys. Rev. E56 4427 [28] Bock H and Schoen M 1999Phys. Rev. E59 4122 [29] Diestler D J and Schoen M 2000Phys. Rev. E62 6615 [30] Porcheron F, Schoen M and Fuchs A H 2002J. Chem. Phys.116 5816 [31] Wu H, Borhan A and Fichthorn K A 2010J. Chem. Phys.133 054704 [32] Shahraz A, Borhan A and Fichthorn K A 2012Langmuir28 14227 [33] Liu L M, Zeng Y H, Do D D, Nicholson D and Liu J J 2018Adsorption24 1 [34] Malijevsky A and Parry A O 2013J. Phys.: Condens. Matter25 305005 [35] Malijevsky A 2014J. Phys.: Condens. Matter26 315002 [36] Malijevsky A and Parry A O 2019Phys. Rev. E99 042804 [37] Malijevsky A 2019Phys. Rev. E99 040801(R) [38] Malijevsky A and Parry A O 2014J. Phys.: Condens. Matter26 355003 [39] Jagiello J and Olivier J P 2013Carbon55 70 [40] Jagiello J and Jaroniec M 2018J. Colloid Interface Sci.532 588 [41] Jagiello J and Kenvin J 2019J. Colloid Interface Sci.542 151 [42] Yatsyshin P, Savva N and Kalliadasis S 2015J. Phys.: Condens. Matter27 275104 [43] Yatsyshin P, Parry A O, Rascón C and Kalliadasis S 2018Mol. Phys.116 1990 [44] Neimark A V, Lin Y, Ravikovitch P I and Thommes M 2009Carbon47 1617 [45] Landers J, Gor G Y and Neimark A V 2013Colloids Surf. A Physicochem. Eng. Aspects437 3 [46] Khlyupin A and Aslyamov T 2017J. Stat. Phys.167 1519 [47] Khlyupin A and Aslyamov T 2021Phys. Rev. E103 022104 [48] Forte E, Haslam A J, Jackson G and Müller E A 2014Phys. Chem. Chem. Phys.16 19165 [49] Ravipati S, Galindo A, Jackson G and Haslam A J 2019Phys. Chem. Chem. Phys.21 25558 [50] Shi K H, Santiso E E and Gubbins K E 2019Langmuir35 5975 [51] Steele W A 1973Surf. Sci.36 317 [52] Evans R 1979Adv. Phys.28 143 [53] Barker J A and Henderson D 1967J. Chem. Phys.47 4714 [54] Cotterman R L, Schwarz B J and Prausnitz J M 1986AIChE J.32 1787 [55] Yu Y X and Wu J Z 2002J. Chem. Phys.117 10156 [56] Sears M P and Frink L J D 2003J. Comput. Phys.190 184 [57] Sauer E and Gross J 2017Ind. Eng. Chem. Res.56 4119 [58] Yu Y X 2009J. Chem. Phys.131 024704 [59] Peng B and Yu Y X 2008J. Phys. Chem. B112 15407 [60] Liu Y, Liu H L, Hu Y and Jiang J W 2010J. Phys. Chem. B114 2820 [61] Fu J, Liu Y, Tian Y and Wu J Z 2015J. Phys. Chem. C119 5374 [62] Johnson J K, Zollweg J A and Gubbins K E 1993Mol. Phys.78 591 [63] Carnahan N F and Starling K E 1969J. Chem. Phys.51 635 [64] Sun Z L, Kang Y S and Kang Y M 2019Ind. Eng. Chem. Res.58 15637 [65] Sun Z L, Kang Y S and Kang Y M 2019Chin. Phys. B28 036102 [66] Snook I K and van Megen W 1980J. Chem. Phys.72 2907 [67] Gardner L, Kruk M and Jaroniec M 2001J. Phys. Chem. B105 12516 [68] Magda J J, Tirrell M and Davis H T 1985J. Chem. Phys.83 1888 [69] Jagiello J, Ania C, Parra J B and Cook C 2015Carbon91 330 [70] Balbuena P B, Berry D and Gubbins K E 1993J. Phys. Chem.97 937 [71] Frink L J D and van Swol F 1998J. Chem. Phys.108 5588 [72] Ghatak C and Ayappa K G 2004J. Chem. Phys.120 9703 [73] Leroy F and Müller-Plathe F 2010J. Chem. Phys.133 044110 [74] Evans R and Marconi U M B 1987J. Chem. Phys.86 7138 [75] Quéré D 2008Annu. Rev. Mater. Res.38 71 [76] Bridgman P W 1914Phys. Rev.3 273 [77] Rowlinson J S and Swinton F L 1982Liquids and Liquid Mixtures (London: Butterworth) [78] Tang Y P and Lu B C Y 1997AIChE J.43 2215 [79] Kolafa J and Nezbeda I 1994Fluid Phase Equilib.100 1 [80] Mecke M, Müller A, Winkelmann J, Vrabec J, Fischer J, Span R and Wagner W 1996Int. J. Thermophys.17 391
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.