Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077306    DOI: 10.1088/1674-1056/abfbd0

Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)

Huan Yang(杨欢)1,†, Yixuan Gao(高艺璇)1,†, Wenhui Niu(牛雯慧)2,3,†, Xiao Chang(常霄)1, Li Huang(黄立)1,‡, Junzhi Liu(刘俊治)2,4, Yiyong Mai(麦亦勇)3, Xinliang Feng(冯新亮)2,§, Shixuan Du(杜世萱)1,5,¶, and Hong-Jun Gao(高鸿钧)1,5
1 Institute of Physics and University of Chinese Academy of Sciences(CAS), Beijing 100190, China;
2 Center for Advancing Electronics Dresden(cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany;
3 School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China;
4 Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China;
5 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  The on-surface synthesis from predesigned organic precursors can yield graphene nanoribbons (GNRs) with atomically precise widths, edge terminations and dopants, which facilitate the tunning of their electronic structures. Here, we report the synthesis of novel sulfur-doped cove-edged GNRs (S-CGNRs) on Au(111) from a specifically designed precursor containing thiophene rings. Scanning tunneling microscopy and non-contact atomic force microscopy measurements elucidate the formation of S-CGNRs through subsequent polymerization and cyclodehydrogenation, which further result in crosslinked branched structures. Scanning tunneling spectroscopy results reveal the conduction band minimum of the S-CGNR locates at 1.2 eV. First-principles calculations show that the S-CGNR possesses an energy bandgap of 1.17 eV, which is evidently smaller than that of an undoped cove-edged GNR (1.7 eV), suggesting effective tuning of the bandgap by introducing sulfur atoms. Further increasing the coverage of precursors close to a monolayer results in the formation of linear-shaped S-CGNRs. The fabrication of S-CGNRs provides one more candidate in the GNR toolbox and promotes the future applications of heteroatom-doped graphene nanostructures.
Keywords:  on-surface synthesis      sulfur-doped cove-edged graphene nanoribbons      scanning tunneling microscopy      non-contact atomic force microscopy  
Received:  01 April 2021      Revised:  22 April 2021      Accepted manuscript online:  27 April 2021
PACS:  73.22.Pr (Electronic structure of graphene)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  85.65.+h (Molecular electronic devices)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51761135130, 61888102, and 21774076), the National Key Research and Development Program of China (Grant Nos. 2018YFA0305800 and 2019YFA0308500), the DFG EnhanceNano (Grant No. 391979941), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000), the International Partnership Program of Chinese Academy of Sciences (Grant No. 112111KYSB20160061), and the K C Wong Education Foundation and the Program of Shanghai Academic Research Leader (Grant No. 19XD1421700).
Corresponding Authors:  Li Huang, Xinliang Feng, Shixuan Du     E-mail:;;

Cite this article: 

Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧) Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111) 2021 Chin. Phys. B 30 077306

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Nat. Acad. Sci. USA 102 10451
[3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[4] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[5] Ma R S, Huan Q, Wu L M, Yan J H, Zhang Y Y, Bao L H, Liu Y Q, Du S X and Gao H J 2017 Chin. Phys. B 26 066801
[6] Guo H, Chen H, Que Y, Zheng Q, Zhang Y Y, Bao L H, Huang L, Wang Y L, Du S X and Gao H J 2019 Chin. Phys. B 28 056107
[7] Huang L, Li G, Zhang Y Y, Bao L H, Huan Q, Lin X, Wang Y L, Guo H M, Shen C M, Du S X and Gao H J 2018 Acta Phys. Sin. 67 126801 (in Chinese)
[8] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[9] Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805
[10] Llinas J P, Fairbrother A, Borin Barin G, Shi W, Lee K, Wu S, Yong Choi B, Braganza R, Lear J, Kau N, Choi W, Chen C, Pedramrazi Z, Dumslaff T, Narita A, Feng X, Mullen K, Fischer F, Zettl A, Ruffieux P, Yablonovitch E, Crommie M, Fasel R and Bokor J 2017 Nat. Commun. 8 633
[11] Su X, Xue Z, Li G and Yu P 2018 Nano Lett. 18 5744
[12] Bronner C, Stremlau S, Gille M, Brausse F, Haase A, Hecht S and Tegeder P 2013 Angew. Chem., Int. Ed. 52 4422
[13] Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R and Crommie M F 2013 ACS Nano 7 6123
[14] Cai J, Pignedoli C A, Talirz L, Ruffieux P, Sode H, Liang L, Meunier V, Berger R, Li R, Feng X, Mullen K and Fasel R 2014 Nat. Nanotechnol. 9 896
[15] Kimouche A, Ervasti M M, Drost R, Halonen S, Harju A, Joensuu P M, Sainio J and Liljeroth P 2015 Nat. Commun. 6 10177
[16] Ruffieux P, Wang S, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mullen K and Fasel R 2016 Nature 531 489
[17] Qi C and Hu J 2018 Chin. Phys. B 27 077106
[18] Xiao Y, Ye Q, Liang J, Yan X and Zhang Y 2020 Chin. Phys. B 29 127201
[19] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K and Fasel R 2010 Nature 466 470
[20] Wang X and Dai H 2010 Nat. Chem. 2 661
[21] Magda G Z, Jin X, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P, Hwang C, Biro L P and Tapaszto L 2014 Nature 514 608
[22] Kolmer M, Steiner A K, Izydorczyk I, Ko W, Engelund M, Szymonski M, Li A P and Amsharov K 2020 Science 369 571
[23] Talirz L, Ruffieux P and Fasel R 2016 Adv. Mater. 28 6222
[24] Nguyen G D, Tsai H Z, Omrani A A, Marangoni T, Wu M, Rizzo D J, Rodgers G F, Cloke R R, Durr R A, Sakai Y, Liou F, Aikawa A S, Chelikowsky J R, Louie S G, Fischer F R and Crommie M F 2017 Nat. Nanotechnol. 12 1077
[25] Chen Y C, Cao T, Chen C, Pedramrazi Z, Haberer D, de Oteyza D G, Fischer F R, Louie S G and Crommie M F 2015 Nat. Nanotechnol. 10 156
[26] Bronner C, Durr R A, Rizzo D J, Lee Y L, Marangoni T, Kalayjian A M, Rodriguez H, Zhao W, Louie S G, Fischer F R and Crommie M F 2018 ACS Nano 12 2193
[27] Liu J, Li B W, Tan Y Z, Giannakopoulos A, Sanchez-Sanchez C, Beljonne D, Ruffieux P, Fasel R, Feng X and Mullen K 2015 J. Am. Chem. Soc. 137 6097
[28] Wang S, Talirz L, Pignedoli C A, Feng X, Mullen K, Fasel R and Ruffieux P 2016 Nat. Commun. 7 11507
[29] Wang X Y, Urgel J I, Barin G B, Eimre K, Di Giovannantonio M, Milani A, Tommasini M, Pignedoli C A, Ruffieux P, Feng X, Fasel R, Mullen K and Narita A 2018 J. Am. Chem. Soc. 140 9104
[30] Gröning O, Wang S, Yao X, Pignedoli C A, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Müllen K, Ruffieux P and Fasel R 2018 Nature 560 209
[31] Rizzo D J, Veber G, Cao T, Bronner C, Chen T, Zhao F, Rodriguez H, Louie S G, Crommie M F and Fischer F R 2018 Nature 560 204
[32] Lv R and Terrones M 2012 Mater. Lett. 78 209
[33] Maaß F, Utecht M, Stremlau S, Gille M, Schwarz J, Hecht S, Klamroth T and Tegeder P 2017 Phys. Rev. B 96 045434
[34] Senkovskiy B V, Usachov D Y, Fedorov A V, Marangoni T, Haberer D, Tresca C, Profeta G, Caciuc V, Tsukamoto S, Atodiresei N, Ehlen N, Chen C, Avila J, Asensio M C, Varykhalov A Y, Nefedov A, Woll C, Kim T K, Hoesch M, Fischer F R and Gruneis A 2018 ACS Nano 12 7571
[35] Zhang Y, Zhang Y, Li G, Lu J, Lin X, Du S, Berger R, Feng X, Müllen K and Gao H J 2014 Appl. Phys. Lett. 105 023101
[36] Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A S, Spijker P and Meyer E 2015 Nat. Commun. 6 8098
[37] Nguyen G D, Toma F M, Cao T, Pedramrazi Z, Chen C, Rizzo D J, Joshi T, Bronner C, Chen Y C, Favaro M, Louie S G, Fischer F R and Crommie M F 2016 J. Phys. Chem. C 120 2684
[38] Zhang Y F, Zhang Y, Li G, Lu J, Que Y, Chen H, Berger R, Feng X, Müllen K, Lin X, Zhang Y Y, Du S, Pantelides S T and Gao H J 2017 Nano Res. 10 3377
[39] Cao Y, Qi J, Zhang Y F, Huang L, Zheng Q, Lin X, Cheng Z, Zhang Y Y, Feng X, Du S, Pantelides S T and Gao H J 2018 Nano Res. 11 6190
[40] Pedramrazi Z, Chen C, Zhao F, Cao T, Nguyen G D, Omrani A A, Tsai H Z, Cloke R R, Marangoni T, Rizzo D J, Joshi T, Bronner C, Choi W W, Fischer F R, Louie S G and Crommie M F 2018 Nano Lett. 18 3550
[41] Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 Science 325 1110
[42] Pavlicek N, Majzik Z, Collazos S, Meyer G, Perez D, Guitian E, Pena D and Gross L 2017 ACS Nano 11 10768
[43] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[44] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[45] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[46] Bartels L, Meyer G and Rieder K H 1997 Appl. Phys. Lett. 71 213
[1] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[2] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[3] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[4] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[5] Realization of semiconducting Cu2Se by direct selenization of Cu(111)
Yumu Yang(杨雨沐), Qilong Wu(吴奇龙), Jiaqi Deng(邓嘉琦), Jing Wang(王静), Yu Xia(夏雨), Xiaoshuai Fu(富晓帅), Qiwei Tian(田麒玮), Li Zhang(张力), Long-Jing Yin(殷隆晶), Yuan Tian(田园), Sheng-Yi Xie(谢声意), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(11): 116802.
[6] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[7] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[8] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[9] Triphenylene adsorption on Cu(111) and relevant graphene self-assembly
Qiao-Yue Chen(陈乔悦), Jun-Jie Song(宋俊杰), Liwei Jing(井立威), Kaikai Huang(黄凯凯), Pimo He(何丕模), Hanjie Zhang(张寒洁). Chin. Phys. B, 2020, 29(2): 026801.
[10] Epitaxial growth and air-stability of monolayer Cu2Te
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
[11] Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy
Li-Wei Jing(井立威), Jun-Jie Song(宋俊杰), Yu-Xi Zhang(张羽溪), Qiao-Yue Chen(陈乔悦), Kai-Kai Huang(黄凯凯), Han-Jie Zhang(张寒洁), Pi-Mo He(何丕模). Chin. Phys. B, 2019, 28(7): 076801.
[12] Scanning tunneling microscopic investigation on morphology of magnetic Weyl semimetal YbMnBi2
Zhen Zhu(朱朕), Dong Yan(严冬), Xiao-Ang Nie(聂晓昂), Hao-Ke Xu(徐豪科), Xu Yang(杨旭), Dan-Dan Guan(管丹丹), Shiyong Wang(王世勇), Yao-Yi Li(李耀义), Canhua Liu(刘灿华), Jun-Wei Liu(刘军伟), Hui-Xia Luo(罗惠霞), Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(7): 077302.
[13] Topological superconductivity in a Bi2Te3/NbSe2 heterostructure: A review
Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(6): 067403.
[14] Epitaxial fabrication of two-dimensional TiTe2 monolayer on Au(111) substrate with Te as buffer layer
Zhipeng Song(宋志朋), Bao Lei(雷宝), Yun Cao(曹云), Jing Qi(戚竞), Hao Peng(彭浩), Qin Wang(汪琴), Li Huang(黄立), Hongliang Lu(路红亮), Xiao Lin(林晓), Ye-Liang Wang(王业亮), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(5): 056801.
[15] Image charge effect on the light emission of rutile TiO2(110) induced by a scanning tunneling microscope
Chaoyu Guo(郭钞宇), Xiangzhi Meng(孟祥志), Qin Wang(王钦), Ying Jiang(江颖). Chin. Phys. B, 2018, 27(7): 077301.
No Suggested Reading articles found!