Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 088803    DOI: 10.1088/1674-1056/abfbcb

Stabilization of formamidinium lead iodide perovskite precursor solution for blade-coating efficient carbon electrode perovskite solar cells

Yu Zhan(占宇), Weijie Chen(陈炜杰), Fu Yang(杨甫), and Yaowen Li(李耀文)
Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
Abstract  Formamidinium lead triiodide (FAPbI3) is a research hotspot in perovskite photovoltaics due to its broad light absorption and proper thermal stability. However, quite a few researches focused on the stability of the FAPbI3 perovskite precursor solutions. Besides, the most efficient FAPbI3 layers are prepared by the spin-coating method, which is limited to the size of the device. Herein, the stability of FAPbI3 perovskite solution with methylammonium chloride (MACl) or cesium chloride (CsCl) additive is studied for preparing perovskite film through an upscalable blade-coating method. Each additive works well for achieving a high-quality FAPbI3 film, resulting in efficient carbon electrode perovskite solar cells (pero-SCs) in the ambient condition. However, the perovskite solution with MACl additive shows poor aging stability that no α-FAPbI3 phase is observed when the solution is aged over one week. While the perovskite solution with CsCl additive shows promising aging stability that it still forms high-quality pure α-FAPbI3 perovskite film even the solution is aged over one month. During the solution aging process, the MACl could be decomposed into methylamine which will form some unfavored intermediated phase inducing δ-phase FAPbI3. Whereas, replacing MACl with CsCl could effectively solve this issue. Our founding shows that there is a great need to develop a non-MACl FAPbI3 perovskite precursor solution for cost-effective preparation of pero-SCs.
Keywords:  perovskite precursor solution      formamidinium lead iodide      blade-coating      carbon electrode  
Received:  31 March 2021      Revised:  24 April 2021      Accepted manuscript online:  27 April 2021
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
  84.60.Jt (Photoelectric conversion)  
Fund: Project supported by the Key Research and Development Program of China (Grant No. 2020YFB1506400), the National Natural Science Foundation of China (Grant Nos. 51922074, 51673138, 51820105003, and 22075194), the Tang Scholar, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Collaborative Innovation Center of Suzhou Nano Science and Technology.
Corresponding Authors:  Fu Yang, Yaowen Li     E-mail:;

Cite this article: 

Yu Zhan(占宇), Weijie Chen(陈炜杰), Fu Yang(杨甫), and Yaowen Li(李耀文) Stabilization of formamidinium lead iodide perovskite precursor solution for blade-coating efficient carbon electrode perovskite solar cells 2021 Chin. Phys. B 30 088803

[1] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M and Snaith H J 2014 Energy Environ. Sci. 7 982
[2] Diao X, Tang Y and Xie Q 2019 Chin. Phys. B 28 17802
[3] Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J H and Seok S I 2019 Science 366 749
[4] Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M and Kim J Y 2021 Nature 592 381
[5] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476
[6] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234
[7] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon. 13 460
[8] Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X and You J 2016 Nat. Energy 2 16177
[9] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
[10] Xu G, Xue R, Stuard S J, Ade H, Zhang C, Yao J, Li Y and Li Y 2021 Adv. Mater. 33 2006753
[11] Yang F, Dong L, Jang D, Tam K C, Zhang K, Li N, Guo F, Li C, Arrive C, Bertrand M, Brabec C J and Egelhaaf H J 2020 Adv. Energy Mater. 10 2001869
[12] Hui W, Chao L, Lu H, Xia F, Wei Q, Su Z, Niu T, Tao L, Du B, Li D, Wang Y, Dong H, Zuo S, Li B, Shi W, Ran X, Li P, Zhang H, Wu Z, Ran C, Song L, Xing G, Gao X, Zhang J, Xia Y, Chen Y and Huang W 2021 Science 371 1359
[13] Wang X, Fan Y, Wang L, Chen C, Li Z, Liu R, Meng H, Shao Z, Du X, Zhang H, Cui G and Pang S 2020 Chem 6 1369
[14] Bruening K, Dou B, Simonaitis J, Lin Y Y, van Hest M F and Tassone C J 2018 Joule 2 2464
[15] Li Z, Klein T R, Kim D H, Yang M, Berry J J, van Hest M F and Zhu K 2018 Nat. Rev. Mater. 3 1
[16] Cai M, Wu Y, Chen H, Yang X, Qiang Y and Han L 2017 Adv. Sci. 4 1600269
[17] Qiu L, He S, Ono L K, Liu S and Qi Y 2019 ACS Energy Lett. 4 2147
[18] Guo F, He W, Qiu S, Wang C, Liu X, Forberich K, Brabec C J and Mai Y 2019 Adv. Funct. Mater. 29 1900964
[19] Guo F, Qiu S, Hu J, Wang H, Cai B, Li J, Yuan X, Liu X, Forberich K and Brabec C J 2019 Adv. Sci. 6 1901067
[20] Xue R, Zhang M, Luo D, Chen W, Zhu R, Yang M, Li Y and Li Y 2020 Sci. China Chem. 63 987
[21] Yang F, Kamarudin M A, Hirotani D, Zhang P, Kapil G, Ng C H, Ma T and Hayase S 2019 Sol. RRL 3 1800275
[22] Yang F, Zhang P, Kamarudin M A, Kapil G, Ma T and Hayase S 2018 Adv. Funct. Mater. 28 1804856
[23] Dou B, Whitaker J B, Bruening K, Moore D T, Wheeler L M, Ryter J, Breslin N J, Berry J J, Garner S M and Barnes F S 2018 ACS Energy Lett. 3 2558
[24] Hu H, Ren Z, Fong P W, Qin M, Liu D, Lei D, Lu X and Li G 2019 Adv. Funct. Mater. 29 1900092
[25] Deng Y, Zheng X, Bai Y, Wang Q, Zhao J and Huang J 2018 Nat. Energy 3 560
[26] Dai X, Deng Y, Van Brackle C H, Chen S, Rudd P N, Xiao X, Lin Y, Chen B and Huang J 2020 Adv. Energy Mater. 10 1903108
[27] Deng Y, Van Brackle C H, Dai X, Zhao J, Chen B and Huang J 2019 Sci. Adv. 5 eaax7537
[28] Wu W Q, Yang Z, Rudd P N, Shao Y, Dai X, Wei H, Zhao J, Fang Y, Wang Q and Liu Y 2019 Sci. Adv. 5 eaav8925
[29] Fagiolari L and Bella F 2019 Energy Environ. Sci. 12 3437
[30] Gao L, Zhou Y, Meng F, Li Y, Liu A, Li Y, Zhang C, Fan M, Wei G and Ma T 2020 Carbon 162 267
[31] Yang F, Kamarudin M A, Kapil G, Hirotani D, Zhang P, Ng C H, Ma T and Hayase S 2018 ACS Appl. Mater. Interfaces 10 24543
[32] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L and Mohite A D 2015 Science 347 522
[33] Kim H D, Ohkita H, Benten H and Ito S 2016 Adv. Mater. 28 917
[34] Castro-Méndez A F, Hidalgo J and Correa-Baena J P 2019 Adv. Energy Mater. 9 1901489
[1] Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field
Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(11): 117103.
[2] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[3] Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer
Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2020, 29(7): 078801.
[4] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
[5] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[6] Current improvement in substrate structured Sb2S3 solar cells with MoSe2 interlayer
Lu Liu(刘璐), Sheng-Li Zhang(张生利), Jian-Yu Wu(吴建宇), Wei-Huang Wang(王伟煌), Wei Liu(刘玮), Li Wu(武莉), Yi Zhang(张毅). Chin. Phys. B, 2020, 29(5): 058801.
[7] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[8] Microstructure evolution and passivation quality of hydrogenated amorphous silicon oxide (a-SiOx:H) on <100>- and <111>-orientated c-Si wafers
Jun-Fan Chen(陈俊帆), Sheng-Sheng Zhao(赵生盛), Ling-Ling Yan(延玲玲), Hui-Zhi Ren(任慧志), Can Han(韩灿), De-Kun Zhang(张德坤), Chang-Chun Wei(魏长春), Guang-Cai Wang(王广才), Guo-Fu Hou(侯国付), Ying Zhao(赵颖), Xiao-Dan Zhang(张晓丹). Chin. Phys. B, 2020, 29(3): 038801.
[9] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[10] Analysis of highly efficient perovskite solar cells with inorganic hole transport material
I Kabir, S A Mahmood. Chin. Phys. B, 2019, 28(12): 128801.
[11] The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells
Yun-Long Deng(邓云龙), Zhi-Yuan Xu(徐知源), Kai Cai(蔡凯), Fei Ma(马飞), Juan Hou(侯娟), Shang-Long Peng(彭尚龙). Chin. Phys. B, 2019, 28(9): 098802.
[12] New design of ferroelectric solar cell combined with luminescent solar concentrator
Slimane Latreche, Mohamed Fathi, Abderrahmane Kadri. Chin. Phys. B, 2019, 28(8): 088801.
[13] Delta-doped quantum wire tunnel junction for highly concentrated solar cells
Ali Bahrami, Mahyar Dehdast, Shahram Mohammadnejad, Habib Badri Ghavifekr. Chin. Phys. B, 2019, 28(4): 046102.
[14] Insight into band alignment of Zn(O,S)/CZTSe solar cell by simulation
Zhen-Wu Jiang(姜振武), Shou-Shuai Gao(高守帅), Si-Yu Wang(王思宇), Dong-Xiao Wang(王东潇), Peng Gao(高鹏), Qiang Sun(孙强), Zhi-Qiang Zhou(周志强), Wei Liu(刘玮), Yun Sun(孙云), Yi Zhang(张毅). Chin. Phys. B, 2019, 28(4): 048801.
[15] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[4] Li Run-wei, Sun Ji-rong, Wang Zhi-hong, Chen Xin, Zhang Shao-ying, Shen Bao-gen. ENHANCEMENT OF FERROMAGNETIC CLUSTER INDUCED BY MAGNETIC FIELD IN THE PHASE-SEPARATED La0.5Ca0.5MnO3[J]. Chin. Phys., 2000, 9(8): 630 -633 .
[5] Wang Xin, Lu Zu-hong, Deng Hui-hua, Yu Tsing, Mao Hai-fang, Suzuki Toshishige. SURFACE CAPPING OF TiO2 COLLOIDAL NANOPARTICLES STUDIED BY FOURIER TRANSFORM RAMAN SPECTRA[J]. Chin. Phys., 2001, 10(13): 59 -64 .
[6] Li De-Sheng, Zhang Hong-Qing. The soliton-like solutions to the (2+1)-dimensional modified dispersive water-wave system[J]. Chin. Phys., 2004, 13(7): 984 -987 .
[7] Zheng Shi-Biao. Teleportation of atomic states with a weak coherent cavity field[J]. Chin. Phys., 2005, 14(9): 1825 -1827 .
[8] Zheng Shi-Wang, Tang Yi-Fa, Fu Jing-Li. Non-Noether symmetries and Lutzky conservative quantities of nonholonomic nonconservative dynamical systems[J]. Chin. Phys., 2006, 15(2): 243 -248 .
[9] Sun Jian-Cheng, Zhou Ya-Tong, Luo Jian-Guo. Prediction of chaotic systems with multidimensional recurrent least squares support vector machines[J]. Chin. Phys., 2006, 15(6): 1208 -1215 .
[10] Li Rui-Hong, Xu Wei, Li Shuang. Chaos control and reduced-order generalized synchronization for the Chen--Liao system[J]. Chin. Phys., 2007, 16(6): 1591 -1596 .