Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 070304    DOI: 10.1088/1674-1056/abfb5c
RAPID COMMUNICATION Prev   Next  

Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process

Jing Wang(王静)1,2, Chun-Hui Zhang(张春辉)1,2, Jing-Yang Liu(刘靖阳)1,2, Xue-Rui Qian(钱雪瑞)1,2, Jian Li(李剑)1,2, and Qin Wang(王琴)1,2,†
1 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Broadband Wireless Communication and Sensor Network Technology, Key Laboratory of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  The high-purity single-photon source plays an important role in the field of quantum information. Usually, it is generated through spontaneous parametric down-conversion process. In this paper, we investigate and summarize a few approaches on obtaining single-photon sources with a high purity using either PPKTP or PPLN nonlinear crystals. Moreover, we present improved schemes to increase the purity based on existing work, corresponding applicable conditions and procedures are discussed and analyzed. Besides, we carry out numerical simulations and show that nearly perfect purity can be reached even without using any filters. Therefore, this work might provide valuable references for the generation and application of high purity single-photon sources.
Keywords:  quantum information      quantum communication      nonlinear optics  
Received:  14 January 2021      Revised:  04 April 2021      Accepted manuscript online:  26 April 2021
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0306400 and 2017YFA0304100), the National Natural Science Foundation of China (Grant Nos. 12074194, 11774180, and U19A2075), and the Leading-edge Technology Program of Jiangsu Natural Science Foundation, China (Grant No. BK20192001).
Corresponding Authors:  Qin Wang     E-mail:  qinw@njupt.edu.cn

Cite this article: 

Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴) Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process 2021 Chin. Phys. B 30 070304

[1] Zhang C H, Zhang C M, Guo G C and Wang Q 2018 Opt. Express 26 4219
[2] Zhang C H, Zhang C M and Wang Q 2019 Phys. Rev. A 99 052325
[3] Sang M L, Lee S W, Jeong H and Park H S 2020 Phys. Rev. Lett. 124 060501
[4] Mattle K, Weinfuter H, Kwiat P G and Zeilinger A 2002 Rev. Mod. Phys. 74 145
[5] Mosley P J, Lundeen J S, Smith B J, Wasylczyk P, U'Ren A B, Silberhorn C and Walmsley I A 2008 Phys. Rev. Lett. 100 133601
[6] Meyer-Scott E, Montaut N, Tiedau J, Sansoni L, Herrmann H, Bartley T J and Silberhorn C 2017 Phys. Rev. A 95 061803
[7] Brańczyk A M, Ralph T C, Helwig W and Silberhorn C 2010 New J. Phys. 12 063001
[8] Christ A, Lupo C, Reichelt M, Meier T and Silberhorn C 2014 Phys. Rev. A 90 023823
[9] Chen C, Cao B, Niu M Y, Xu F, Zhang Z, Shapiro J H and Wong F N C 2017 Opt. Express 25 7300
[10] U'Ren A B, Silberhorn C, Erdmann R, Banaszek K, Grice W P, Walmsley I A and Raymer M G 2005 Laser Phys. 15 146
[11] Mosley P J, Lundeen J S, Smith B J and Walmsley I A 2008 New J. Phys. 10 093011
[12] Bruno N, Martin A, Guerreiro T, Sanguinetti B and Thew R T 2014 Opt. Express 22 17246
[13] Zhang Q Y, Xue G T, Xu P, Gong Y X, Xie Z and Zhu S 2018 Phys. Rev. A 97 022327
[14] Kaneda F, Palmett K G, U'Ren A B and Kwiat P G 2016 Opt. Express 24 10733
[15] Jin R B, Shimizu R, Wakui K, Benichi H and Sasaki M 2013 Opt. Express 21 10659
[16] Jin R B, Shimizu R, Wakui K, Fujiwara M, Yamashita T, Miki S, Terai S, Wang Z and Sasaki M 2014 Opt. Express 22 11498
[17] Jin R B, Gerrits T, Fujiwara M, Wakabayashi R, Yamashita T, Miki S, Terai H, Shimizu R, Takeoka M and M. Sasaki 2015 Opt. Express 23 28836
[18] Jin R B, Cai N, Huang Y, Hao X Y, Wang S, Li F, Song H Z, Zhou Q and Shimizu R 2019 Phys. Rev. Appl. 11 034067
[19] Weston M M, Chrzanowski H M, Wollmann S, Boston A, Ho J, Shalm L K, Verma V B, Allman M S, Nam S W, Patel R B, Slussarenko S and Pryde G J 2016 Opt. Express 24 10869
[20] Giovannetti V, Maccone L, Shapiro J H and Wong F N C 2002 Phys. Rev. Lett. 88 183602
[21] Graffitti F, Kelly-Massicotte J, Fedrizzi A and Brańczyk A M 2018 Phys. Rev. A 98 053811
[22] Laudenbach F, Jin R B, Greganti C, Hentschel M, Walther P and Hübel 2017 Phys. Rev. Appl. 8 024035
[23] Grobe R, Rzazewski K and Eberly J H 1994 J. Phys. B: At. Mol. Phys. 27 L503
[24] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[25] Keller T E and Rubin M H 1997 Phys. Rev. A 56 1534
[26] Grice W P, U'Ren A B and Walmsley I A 2001 Phys. Rev. A 64 063815
[27] Edamatsu K, Shimizu R, Ueno W, Jin R B, Kaneda F, Yabuno M, Suzuki H, Nagano S, Syouji A and Suizu K 2011 Prog. Inform. 8 19
[28] Quesada N and Brańczyk A M 2018 Phys. Rev. A 98 043813
[29] Zhou X Y, Zhang C M and Wang Q 2017 Journal of the Optical Society of America B 34 1518
[30] Dmitriev V G, Gurzadyan G G and Nikogosyan D N 1999 Handbook of Nonlinear Optical Crystals 3rd edn. (Springer-Verlag Berlin Heidelberg)
[31] Gayer O, Sacks Z, Galun E and Arie A 2008 Appl. Phys. B 91 343
[1] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[2] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[3] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[4] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[5] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[6] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[7] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[8] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[9] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[10] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[11] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[12] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[13] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[14] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[15] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
No Suggested Reading articles found!