Suppression of servo error uncertainty to 10-18 level using double integrator algorithm in ion optical clock
Jin-Bo Yuan(袁金波)1,2,3, Jian Cao(曹健)1,2,†, Kai-Feng Cui(崔凯枫)1,2, Dao-Xin Liu(刘道信)1,2,3, Yi Yuan(袁易)1,2,3, Si-Jia Chao(晁思嘉)1,2, Hua-Lin Shu(舒华林)1,2, and Xue-Ren Huang(黄学人)1,2,‡
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract A universal locking model for single ion optical clocks was built based on a simple integrator and a double integrator. Different integrator algorithm parameters have been analyzed in both numerical simulations and experiments. The frequency variation measured by the comparison of two optical clocks coincides well with the simulation results for different second integrator parameters. According to the experimental results, the sensitivity of the servo error influenced by laser frequency drift with the addition of a double integrator was suppressed by a factor of 107. In a week-long comparison of optical clocks, the relative uncertainty of the servo error is determined to be 1.9×10-18, which is meaningful for the systematic uncertainty of the transportable single 40Ca+ ion optical clock entering the 10-18 level.
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304404) and the National Natural Science Foundation of China (Grant No. 11674357).
Jin-Bo Yuan(袁金波), Jian Cao(曹健), Kai-Feng Cui(崔凯枫), Dao-Xin Liu(刘道信), Yi Yuan(袁易), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人) Suppression of servo error uncertainty to 10-18 level using double integrator algorithm in ion optical clock 2021 Chin. Phys. B 30 070305
[1] Riehle F, Gill P, Arias F and Robertsson L 2018 Metrologia55 188 [2] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, et al. 2017 Nat. Photon.13 714 [3] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett.123 033201 [4] Huntemann N, Sanner C, Lipphardt B, Tamm Chr and Peik E 2016 Phys. Rev. Lett.116 063001 [5] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, et al. 2018 Nature564 87 [6] Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C and Fang Z J 2015 Chin. Phys. Lett.32 090601 [7] Kong D H, Wang Z H, Guo F, Zhang Q, Lu X T, Wang Y B and Chang H 2020 Chin. Phys. B29 070602 [8] Sun Y X. Yao Y, Hao Y Q, Yu H F, Jiang Y Y and Ma L S 2020 Chin. Phys. Lett.18 070201 [9] Mehlstäubler T E, Grosche G, Lisdat C, Schmidt P O and Denker H 2018 Rep. Prog. Phys.81 064401 [10] Derevianko A and Pospelov M 2018 Nat. Phys.10 933 [11] Arvanitaki A, Huang J and Van T K 2015 Phys. Rev. D91 015015 [12] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys.90 025008 [13] Bernard J E, Marmet L and Madej A A 1998 Opt. Commun.150 170 [14] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 Phys. Rev. Lett.80 2089 [15] Leroux I D, Scharnhorst N, Hannig S, Kramer J, Pelzer L, Stepanova M and Schmidt P O 2017 Metrologia54 307 [16] Zhang B L, Huang y, Zhang H Q, Hao Y M, Zeng M Y, Guan H and Gao K L 2020 Chin. Phys. B29 074209 [17] Sauter T h, Neuhauser W, Blatt R and Toschek P E 1986 Phys. Rev. Lett.57 1696 [18] Bergquist J C, Hulet R G, Itano W M and Wineland D J 1986 Phys. Rev. Lett.57 1699 [19] Barwood G, Gao K, Gill P, Huang G L and Klein H A 2001 IEEE Trans. Instrum. Meas.50 543 [20] Bernard J E, Madej A A, Marmet L, Whitford B G, Siemsen K J and Cundy S 1999 Phys. Rev. Lett.82 3228 [21] Peik E, Schneider T and Tamm C 2005 J. Phys. B: At., Mol. Opt. Phys.39 145 [22] Cao J, Zhang P, Shang J J, Cui K F, Yuan J B, Chao S J, Wang S M, Shu H L and Huang X R 2017 Appl. Phys. B: Lasers Opt.123 1 [23] Wang S M, Cao J, Yuan J B, Liu D X, Shu H L and Huang X R 2020 Opt. Express28 11852 [24] Margolis H S, Barwood G P, Huang G, Klein H A, Lea S N, Szymaniec K and Gill P 2004 Science306 1355 [25] Black E D 2001 Am. J. Phys.69 79 [26] Shang J J, Cao J, Cui K F, Wang S M, Zhang P, Yuan J B, Chao S J, Shu H L and Huang X R 2017 Opt. Commun.382 410
[1]
Study of optical clocks based on ultracold 171Yb atoms Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[2]
Progress on the 40Ca+ ion optical clock Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[3]
Experiments on trapping ytterbium atoms in optical lattices Zhou Min (周敏), Chen Ning (陈宁), Zhang Xiao-Hang (张晓航), Huang Liang-Yu (黄良玉), Yao Mao-Fei (姚茂飞), Tian Jie (田洁), Gao Qi (高琪), Jiang Hai-Ling (蒋海灵), Tang Hai-Yao (唐海瑶), Xu Xin-Ye (徐信业). Chin. Phys. B, 2013, 22(10): 103701.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.