Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077401    DOI: 10.1088/1674-1056/abfb5a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Substitution effect on the superconductivity in Mo3-xRexAl2C with β-Mn structure prepared by microwave method

Jun-Nan Sun(孙俊男)1,2, Bin-Bin Ruan(阮彬彬)2,3,†, Meng-Hu Zhou(周孟虎)2,3, Yin Chen(陈银)2, Qing-Song Yang(杨清松)2,4, Lei Shan(单磊)1, Ming-Wei Ma(马明伟)2,3, Gen-Fu Chen(陈根富)2,3,4, and Zhi-An Ren(任治安)2,3,4,‡
1 Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
2 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We report the microwave synthesis and the doping effect of Mo3-xRexAl2C (0 ≤ x ≤ 0.3) superconductor. Re doping into Mo3Al2C results in a regular shrinkage of the lattice, marked by the linear decrease of lattice parameter a from 6.868(1) Å (for Mo3Al2C) to 6.846(2) Å (for Mo2.7Re0.3Al2C). Upon Re doping, Tc of Mo3-xRexAl2C first increases and then decreases, with the maximum Tc = 9.14 K at the optimal doping level of x = 0.09. Our report provides a convenient method to synthesize Mo3-xRexAl2C within minutes, and also marks the first Re doping study with enhanced superconductivity on the non-centrosymmetric superconductor Mo3Al2C.
Keywords:  Mo3-xRexAl2C      superconductivity      β-Mn structure      microwave synthesis  
Received:  05 March 2021      Revised:  23 March 2021      Accepted manuscript online:  26 April 2021
PACS:  74.25.-q (Properties of superconductors)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  74.70.Wz (Carbon-based superconductors)  
  81.20.-n (Methods of materials synthesis and materials processing)  
Fund: Project supported by the National Key Research and Development of China (Grant Nos. 2018YFA0704200 and 2016YFA0300301), the National Natural Science Foundation of China (Grant Nos. 12074414 and 11774402), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000).
Corresponding Authors:  Bin-Bin Ruan, Zhi-An Ren     E-mail:  bbruan@mail.ustc.edu.cn;renzhian@iphy.ac.cn

Cite this article: 

Jun-Nan Sun(孙俊男), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Yin Chen(陈银), Qing-Song Yang(杨清松), Lei Shan(单磊), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安) Substitution effect on the superconductivity in Mo3-xRexAl2C with β-Mn structure prepared by microwave method 2021 Chin. Phys. B 30 077401

[1] Smidman M, Salamon M B, Yuan H Q and Agterberg D F 2017 Rep. Prog. Phys. 80 036501
[2] Yoshida H, Okabe H, Matsushita Y, Isobe M and Takayama-Muromachi E 2017 Phys. Rev. B 95 184514
[3] Kneidinger F, Bauer E, Zeiringer I, Rogl P, Blaas-Schenner C, Reith D and Podloucky R 2015 Physica C 514 388
[4] Gor'kov L P and Rashba E I 2001 Phys. Rev. Lett. 87 037004
[5] Bauer E, Hilscher G, Michor H, Paul C, Scheidt E W, Gribanov A, Seropegin Y, Noel H, Sigrist M and Rogl P 2004 Phys. Rev. Lett. 92 027003
[6] Kimura N, Ito K, Saitoh K, Umeda Y, Aoki H and Terashima T 2005 Phys. Rev. Lett. 95 247004
[7] Sugitani I, Okuda Y, Shishido H, Yamada T, Thamizhavel A, Yamamoto E, D. Matsuda T, Haga Y, Takeuchi T, Settai R and Ōnuki Y 2006 J. Phys. Soc. Jpn. 75 043703
[8] Akazawa T, Hidaka H, Fujiwara T, Kobayashi T C, Yamamoto E, Haga Y, Settai R and Nuki Y 2004 J. Phys.: Condens. Matter 16 L29
[9] Mu Q G, Ruan B B, Zhao K, Pan B J, Liu T, Shan L, Chen G F and Ren Z A 2018 Sci. Bull. 63 952
[10] Zhao K, Mu Q G, Ruan B B, Zhou M H, Yang Q S, Liu T, Pan B J, Zhang S, Chen G F and Ren Z A 2020 Chin. Phys. Lett. 37 097401
[11] Zhao K, Mu Q G, Ruan B B, Liu T, Pan B J, Zhou M H, Zhang S, Chen G F and Ren Z A 2020 APL Mater. 8 031103
[12] Johnston J, Toth L, Kennedy K and Parker E R 1964 Solid State Commun. 2 123
[13] Niimura H, Kawashima K, Inoue K, Yoshikawa M and Akimitsu J 2014 J. Phys. Soc. Jpn. 83 044702
[14] Wei W, Zhao G. J, Kim D. R, Jin C, Zhang J. L, Ling L, Zhang L, Du H, Chen T. Y, Zang J, Tian M, Chien C L and Zhang Y 2016 Phys. Rev. B 94 104503
[15] Salamakha L P, Sologub O, Stöger B, Michor H, Bauer E and Rogl P F 2015 J. Solid State Chem. 229 303
[16] Ying T P, Qi Y P and Hosono H 2019 Phys. Rev. B 100 094522
[17] Iyo A, Hase I, Fujihisa H, Gotoh Y, Takeshita N, Ishida S, Ninomiya H, Yoshida Y, Eisaki H and Kawashima K 2019 Phys. Rev. Mater. 3 124802
[18] Bauer E, Rogl G, Chen X Q, Khan R T, Michor H, Hilscher G, Royanian E, Kumagai K, Li D. Z, Li Y Y, Podloucky R and Rogl P 2010 Phys. Rev. B 82 064511
[19] Togano K, Badica P, Nakamori Y, Orimo S, Takeya H and Hirata K 2004 Phys. Rev. Lett. 93 247004
[20] Badica P, Kondo T and Togano K 2005 J. Phys. Soc. Jpn. 74 1014
[21] Takeya H, Hirata K, Yamaura K, Togano K, El Massalami M, Rapp R, Chaves F A and Ouladdiaf B 2005 Phys. Rev. B 72 104506
[22] Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M and Salamon M B 2006 Phys. Rev. Lett. 97 017006
[23] Nishiyama M, Inada Y and Zheng G Q 2007 Phys. Rev. Lett. 98 047002
[24] Badica P, Salem-Sugui S, Alvarenga A D and Jakob G 2010 Supercond. Sci. Technol. 23 105018
[25] Peets D C, Eguchi G, Kriener M, Harada S, Shamsuzzaman S K M, Inada Y, Zheng G Q and Maeno Y 2012 J. Phys.: Conf. Ser. 400 022096
[26] Sekine C, Sai U, Hayashi J, Kawamura Y and Bauer E 2017 J. Phys.: Conf. Ser. 950 042028
[27] Karki A B, Xiong Y M, Vekhter I, Browne D, Adams P W, Young D P, Thomas K R, Chan J Y, Kim H and Prozorov R 2010 Phys. Rev. B 82 064512
[28] Koyama T, Maeda Y, Yamazaki T, Ueda K I, Mito T, Kohara T, Waki T, Tabata Y, Tsunemi H, Ito M and Nakamura H 2013 J. Phys. Soc. Jpn. 82 073709
[29] Ramachandran B, Jhiang J Y, Kuo Y K, Kuo C N and Lue C S 2016 Supercond. Sci. Technol. 29 035003
[30] Pan B J, Zhao K, Liu T, Ruan B B, Zhang S, Chen G F and Ren Z A 2019 Chin. Phys. Lett. 36 017401
[31] Murgia F, Antitomaso P, Stievano L, Monconduit L and Berthelot R 2016 J. Solid State Chem. 242 151
[32] Momma K and Izumi F 2008 J. Appl. Crystallogr. 41 653
[33] Tarutani Y and Kudo M 1977 J. Less-Common Met. 55 221
[34] Athanasiou N S 1997 Mod. Phys. Lett. B 11 939
[1] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[2] Superconductivity in an intermetallic oxide Hf3Pt4Ge2O
Chengchao Xu(徐程超), Hong Wang(王鸿), Huanfang Tian(田焕芳), Youguo Shi(石友国), Zi-An Li(李子安), Ruijuan Xiao(肖睿娟), Honglong Shi(施洪龙), Huaixin Yang(杨槐馨), and Jianqi Li(李建奇). Chin. Phys. B, 2021, 30(7): 077403.
[3] Inverted V-shaped evolution of superconducting temperature in SrBC under pressure
Ru-Yi Zhao(赵如意), Xun-Wang Yan(闫循旺), and Miao Gao(高淼). Chin. Phys. B, 2021, 30(7): 076301.
[4] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
[5] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[6] Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams
Hong-Jun Zhang(张宏俊), Ji Wen(文继), Zhao-Hong Mo(莫钊洪), Hong-Rui Liu(刘鸿瑞), Xiao-Dong Wang(汪小东), Zhong-Hua Xiong(熊忠华), Jin-Wen Zhang(张锦文), and Mao-Bing Shuai(帅茂兵). Chin. Phys. B, 2021, 30(11): 117401.
[7] Effects of electron correlation on superconductivity in the Hatsugai-Kohmoto model
Huai-Shuang Zhu(祝怀霜) and Qiang Han(韩强). Chin. Phys. B, 2021, 30(10): 107401.
[8] A short review of the recent progresses in the study of the cuprate superconductivity
Tao Li(李涛). Chin. Phys. B, 2021, 30(10): 100508.
[9] A review of some new perspectives on the theory of superconducting Sr2RuO4
Wen Huang(黄文). Chin. Phys. B, 2021, 30(10): 107403.
[10] Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn2
Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊). Chin. Phys. B, 2021, 30(1): 017304.
[11] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[12] Flattening is flattering: The revolutionizing 2D electronic systems
Baojuan Dong(董宝娟), Teng Yang(杨腾), Zheng Han(韩拯). Chin. Phys. B, 2020, 29(9): 097307.
[13] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[14] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[15] Electrical and thermoelectric study of two-dimensional crystal of NbSe2
Xin-Qi Li(李新祺), Zhi-Lin Li(李治林), Jia-Ji Zhao(赵嘉佶), Xiao-Song Wu(吴孝松). Chin. Phys. B, 2020, 29(8): 087402.
No Suggested Reading articles found!