Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 076201    DOI: 10.1088/1674-1056/abf643

Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure

Bowen Zhang(张博文)1,2, Chao An(安超)3,4,†, Xuliang Chen(陈绪亮)1,6, Ying Zhou(周颖)3, Yonghui Zhou(周永惠)1,6, Yifang Yuan(袁亦方)1, Chunhua Chen(陈春华)1, Lili Zhang(张丽丽)5, Xiaoping Yang(杨晓萍)1,6,‡, and Zhaorong Yang(杨昭荣)1,3,6,§
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China;
2 Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China;
3 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
4 Key Laboratory of Structure and Functional Regulation of Hybrid Materials(Anhui University), Ministry of Education, Hefei 230601, China;
5 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200031, China;
6 High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China
Abstract  Layered lanthanum silver antimonide LaAgSb2 exhibits both charge density wave (CDW) order and Dirac-cone-like band structure at ambient pressure. Here, we systematically investigate the pressure evolution of structural and electronic properties of LaAgSb2 single crystal. We show that the CDW order is destabilized under compression, as evidenced by the gradual suppression of magnetoresistance. At PC~ 22 GPa, synchrotron x-ray diffraction and Raman scattering measurements reveal a structural modification at room-temperature. Meanwhile, the sign change of the Hall coefficient is observed at 5 K. Our results demonstrate the tunability of CDW order in the pressurized LaAgSb2 single crystal, which can be helpful for its potential applications in the next-generation devices.
Keywords:  high pressure      charge density wave      crystal structure      electrical transport  
Received:  07 March 2021      Revised:  05 April 2021      Accepted manuscript online:  09 April 2021
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  61.05.C- (X-ray diffraction and scattering)  
  72.15.-v (Electronic conduction in metals and alloys)  
  74.62.Fj (Effects of pressure)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0305700, 2017YFA0403600, and 2016YFA0401804), the National Natural Science Foundation of China (Grant Nos. U1632275, U19A2093, U1932152, U1632162, 12004004, 11874362, 11804344, 11704387, and 11674325), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1908085QA18, 2008085QA40, and 1808085MA06), the Users with Excellence Project of Hefei Science Center CAS (Grant Nos. 2018HSC-UE012, 2020HSC-CIP014, 2020HSC-UE015, and 2021HSC-UE008), and the Major Program of Development Foundation of Hefei Center for Physical Science and Technology (Grant No. 2018ZYFX002). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province (Grant No. AHHM-FX-2020-02). Yonghui Zhou was supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2020443).
Corresponding Authors:  Chao An, Xiaoping Yang, Zhaorong Yang     E-mail:;;

Cite this article: 

Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣) Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure 2021 Chin. Phys. B 30 076201

[1] Chen R Y, Zhang S J, Zhang M Y, Dong T and Wang N L 2017 Phys. Rev. Lett. 118 107402
[2] Sidorov V A, Bauer E D, Frederick N A, Jeffries J R, Nakatsuji S, Moreno N O, Thompson J D, Maple M B and Fisk Z 2003 Phys. Rev. B 67 224419
[3] Myers K D, Canfield P C, Kalatsky V A and Pokrovsky V L 1999 Phys. Rev. B 59 1121
[4] Song C, Good W, Wermeille D, Goldman A I, Bud'ko S L and Canfield P C 2002 Phys. Rev. B 65 172415
[5] Prozorov R, Vannette M D, Samolyuk G D, Law S A, Bud'ko S L and Canfield P C 2007 Phys. Rev. B 75 014413
[6] Wang K F and Petrovic C 2012 Phys. Rev. B 86 155213
[7] Shi X, Richard P, Wang K F, Liu M, Matt C E, Xu N, Dhaka R S, Ristic Z, Qian T, Yang Y F, Yang C, Shi M and Ding H 2016 Phys. Rev. B 93 081105
[8] Myers K D, Bud'ko S L, Fisher I R, Islam Z, Kleinke H, Lacerda A H and Canfield P C 1999 J. Magn. Magn. Mater. 205 27
[9] Song C, Park J, Koo J, Lee K B, Rhee J Y, Bud'ko S L, Canfield P C, Harmon B N and Goldman A I 2003 Phys. Rev. B 68 035113
[10] Bud'ko S L, Wiener T A, Ribeiro R A, Canfield P C, Vogt T and Lacerda A H 2006 Phys. Rev. B 73 184111
[11] Torikachvili M S, Bud'ko S L, Law S A, Tillman M E, Mun E D and Canfield P C 2007 Phys. Rev. B 76 235110
[12] Watanabe Y, Inada Y, Hidaka H, Kotegawa H, Kobayashi T C, Matsuda T D and Aoki D 2006 Physica B 378-380 827
[13] Mun E D, Bud'ko S L and Canfiel P C 2011 J. Phys.: Condens. Matter 23 476001
[14] Yomo R, Yamaya K, Abliz M, Hedo M and Uwatoko Y 2005 Phys. Rev. B 71 132508
[15] Akiba K, Nishimori H, Umeshita N and Kobayashi T C 2021 Phys. Rev. B 103 085134
[16] Zhang L L, Yan S, Jiang S, Yang K, Wang H, He S M, Liang D X, Zhang L, He Y, Lan X Y, Mao C W, Wang J, Jiang H, Zheng Y, Dong Z H, Zeng L Y and Guo L A 2015 Nucl. Sci. Tech. 26 060101
[17] Prescher C and Prakapenka V B 2015 High Pressure Res. 35 223
[18] Hunter B A 1998 Rietica – a Visual Rietveld Program, International Union of Crystallography Commission on Powder Diffraction Newsletter No. 20 (Summer 1998)
[19] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[20] Zhou Y, Lu P, Du Y, Zhu X, Zhang G, Zhang R, Shao D, Chen X, Wang X, Tian M, Sun J, Wan X, Yang Z, Yang W, Zhang Y and Xing D 2016 Phys. Rev. Lett. 117 146402
[21] Chen C H, Zhou Y H, Chen X L, Han T, An C, Zhou Y, Yuan Y F, Zhang B W, Wang S Y, Zhang R R, Zhang L L, Zhang C J, Yang Z R, Delong L E and Cao G 2020 Phys. Rev. B 101 144102
[22] Zhang M, Wang X Q, Azizur Rahman, Zeng Q S, Huang D, Dai R C, Wang Z P and Zhang Z M 2018 Appl. Phys. Lett. 112 041907
[23] Enderlein C, Ramos S M, Bittencourt M, Continentino M A, Brewer W and Baggio-Saitovich E 2013 J. Appl. Phys. 114 143711
[24] Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature 458 182
[25] Guo J, Wang H H, Von Rohr F, Yi W, Zhou Y Z, Wang Z, Cai S, Zhang S, Li X D, Li Y C, Liu J, Yang K, Li A G, Jiang S, Wu Q, Xiang T, Cava R J and Sun L L 2017 Phys. Rev. B 96 224513
[26] Zhou Y H, Chen C H, Zhou Y, Chen X L, Gu C C, An C, Zhang B W, Yuan Y F, Wu H, Zhang R R, Zhang L L, Zhu X D, Yang X P and Yang Z R 2019 Phys. Rev. B 99 125104
[27] Kenichi T 1999 Phys. Rev. B 60 6171
[28] Gu C C, Hu J, Chen X L, Guo Z P, Fu B T, Zhou Y H, An C, Zhou Y, Zhang R R, Xi C Y, Gu Q Y, Park C, Shu H Y, Yang W G, Pi L, Zhang Y H, Yao Y G, Yang Z R, Zhou J H, Sun J, Mao Z Q and Tian M L 2019 Phys. Rev. B 100 205124
[29] Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B, Sahoo S, Peter S C, Kanchana V and Narayana C 2018 Phys. Rev. B 97 085107
[30] An C, Chen X L, Wu B, Zhou Y H, Zhou Y, Zhang R R, Park C Y, Song F Q and Yang Z R 2018 Phys. Rev. B 97 174516
[31] Nakayama A, Aoki K and Carlón R P 2001 Phys. Rev. B 64 064104
[32] Errandonea D, Manjón F J, Garro N, Rodríguez-Hernández P, Radescu S, Mujica A, Muñoz A and Tu C Y 2008 Phys. Rev. B 78 054116
[33] Muthu D V S, Teredesai P, Saha S, Suchitra, Waghmare U V, Sood A K and Rao C N R 2015 Phys. Rev. B 91 224308
[34] Boulova M, Rosman N, Bouvier P and Lucazeau G 2002 J. Phys.: Condens. Matter 14 5849
[35] Zarechnaya E, Dubrovinskaia N, Caracas R, Merlini M, Hanfland M, Filinchuk Y, Chernyshov D, Dmitriev V and Dubrovinsky L 2010 Phys. Rev. B 82 184111
[36] Pereira A L J, Gracia L, Santamaría-Pérez D, Vilaplana R, Manjón F J, Errandonea D, Nalin M and Beltrán A 2012 Phys. Rev. B 85 174108
[37] Zhao Z, Wang S B, Zhang H J and Mao W L 2013 Phys. Rev. B 88 024120
[38] Ibáñez J, Sans J A, Popescu C, López-Vidrier J, Elvira-Betanzos J J, Cuenca-Gotor V P, Gomis O, Manjón F J, Rodríguez-Hernández P and Muñoz A 2016 J. Phys. Chem. C 120 10547
[39] Wang L R, Wang K, Xiao G J, Zeng Q S and Zou B 2016 J. Phys. Chem. Lett. 7 5273
[40] Zhang L, Zeng Q X and Wang K 2017 J. Phys. Chem. Lett. 8 3752
[41] Pal S, Arora R, Roychowdhury S, Harnagea L, Saurabh K, Shenoy S, Muthu D V S, Biswas K, Waghmare U V and Sood A K 2020 Phys. Rev. B 101 155202
[42] Lifshitz I M 1960 Sov. Phys. JPET 11 1130
[43] Vilaplana R, Santamaría-Pérez D, Gomis O, Manjón F J, González J, Segura A, Muñoz A, Rodríguez-Hernández P, Pérez-González E, Marín-Borrás V, Muñoz-Sanjose V, Drasar C and Kucek V 2011 Phys. Rev. B 84 184110
[44] Vilaplana R, Gomis O, Manjón F J, Segura A, Pérezgonzález E, Rodríguez-Hernández P, Muñoz A, González J, Marín-Borrás V, Muñoz-Sanjosé V, Drasar C and Kucek V 2011 Phys. Rev. B 84 104112
[45] Gomis O, Vilaplana R, Manjón F J, Rodríguez-Hernández P, Pérez-González E, Muñoz A, Kucek V and Drasar C 2011 Phys. Rev. B 84 174305
[46] Bera A, Pal K, Muthu D V S, Sen S, Guptasarma P, Waghmare U V and Sood A K 2013 Phys. Rev. Lett. 110 107401
[47] Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B, Sahoo S, Peter S C, Kanchana V and Narayana C 2018 Phys. Rev. B 97 085107
[1] Two different emission enhancement of trans-stilbene crystal under high pressure: Different evolution of structure
Yarong Gu(古雅荣), Guicheng Shao(邵贵成), Zhumei Tian(田竹梅), Haixia Li(李海霞), Kai Wang(王凯), and Bo Zou(邹勃). Chin. Phys. B, 2022, 31(1): 017901.
[2] Structural modulation and physical properties of cobalt-doped layered La2M5As3O2 (M= Cu, Ni) compounds
Lei Yang(杨蕾), Yan-Peng Song(宋艳鹏), Jun-Jie Wang(王俊杰), Xu Chen(陈旭), Hui-Jing Du(杜会静), and Jian-Gang Guo(郭建刚). Chin. Phys. B, 2021, 30(7): 076106.
[3] Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness
Bin-Hua Chu(初斌华) and Yuan Zhao(赵元). Chin. Phys. B, 2021, 30(7): 076107.
[4] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[5] Anomalous bond-length behaviors of solid halogens under pressure
Min Wu(吴旻), Ye-Feng Wu(吴烨峰), and Yi Ma(马毅). Chin. Phys. B, 2021, 30(7): 076401.
[6] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[7] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[8] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[9] Ground-state structure and physical properties of YB 3 predicted from first-principles calculations
Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华). Chin. Phys. B, 2021, 30(4): 046101.
[10] Synthesis of ternary compound in H-S-Se system at high pressures
Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(12): 127801.
[11] Progress in functional studies of transition metal borides
Teng Ma(马腾), Pinwen Zhu(朱品文), and Xiaohui Yu(于晓辉). Chin. Phys. B, 2021, 30(10): 108103.
[12] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[13] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[14] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[15] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
No Suggested Reading articles found!