Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 075101    DOI: 10.1088/1674-1056/abf351

Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow

Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋)
MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China
Abstract  The nanoparticles suspended in a shear flow are subjected to a shear lift force, which is of great importance for the nanoparticle transport. In previous theoretical analysis on the shear lift, it is usually assumed that the particle temperature is equal to the temperature of the surrounding gas media. However, in some particular applications, the particle temperature can significantly differ from the gas temperature. In the present study, the effect of particle temperature on the shear lift of nanoparticles is investigated and the corresponding formulas of shear lift force are derived based on the gas kinetic theory. For extremely small nanoparticles (with radius R<2 nm) or large nanoparticles (R>20 nm), the influence of the particle temperature can be neglected. For the intermediate particle size, the relative error induced by the equal gas-particle temperature can be significant. Our findings can bring an insight into accurate evaluation of the nanoparticle transport properties.
Keywords:  shear lift force      nanoparticle      temperature effect      gas kinetic theory  
Received:  23 February 2021      Revised:  22 March 2021      Accepted manuscript online:  30 March 2021
PACS:  51.10.+y (Kinetic and transport theory of gases)  
  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
  47.45.Dt (Free molecular flows)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51776007), Beijing Nova Program of Science and Technology (Grant No. Z191100001119033), and the Youth Talent Support Program of Beijing Municipal Education Committee (Grant No. CIT&TCD201904015).
Corresponding Authors:  Jun Wang     E-mail:

Cite this article: 

Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋) Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow 2021 Chin. Phys. B 30 075101

[1] Binder S, Glatthaar M and Rdlein E 2014 Aerosol Sci. Technol. 48 924
[2] Huang J W, Kao Y M, Chiu P W, Wu T H and Lee Y C 2021 J. Nanopart. Res. 23 25
[3] Zhang Y, Li S, Yan W and Yao Q 2012 Powder Technol. 227 24
[4] Li S, Ren Y, Biswas P and Stephen D T 2016 Prog. Energy Combust Sci. 55 1
[5] Salmanzadeh M, Zahedi G, Ahmadi G, Marr D R and Glauser M 2012 J. Aerosol Sci. 53 29
[6] Brouwer D H, Duuren-Stuurman B V, Berges M, Bard D, Jankowska E, Moehlmann C, Pelzer J and Mark D 2013 J. Nanopart. Res. 15 2090
[7] Li R N, Da X H, Li X, Lu Y S, Gu F F and Liu Y 2021 Chin. Phys. B 30 017502
[8] Koullapis P, Kassinos S C, Muela J, Perez-Segarra C, Rigola J, Lehmkuhl O, Cui Y, Sommerfeld M, Elcner J, Jicha M, Saveljic I, Filipovic N, Lizal F and Nicolaou L 2018 Eur. J. Pharm. Sci. 113 77
[9] Poiseuille J L M 1836 Ann. Sci. Nat. Strie. 5 111
[10] Saffman P G 1965 J. Fluid Mech. 22 385
[11] McLaughlin J B 1991 J. Fluid Mech. 224 261
[12] Bagchi P and Balachandar S 2002 Phys. Fluids 14 2719
[13] Liu N and Bogy D B 2008 Phys. Fluids 20 107102
[14] Liu N and Bogy D B 2009 Phys. Fluids 21 047102
[15] Crowe C T, Schwarzkopf J D, Sommerfeld M and Tsuji Y 2011 Multiphase flows with droplets and particles (Boca Raton: CRC Press)
[16] Luo S, Wang J, Xia G and Li Z 2016 J. Fluid Mech. 795 443
[17] Zhong W, Yu A, Liu X, Tong Z and Zhang H 2016 Powder Technol. 302 108
[18] Chapman S and Cowling T G 1970 The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (London: Cambridge University Press)
[19] Sun X and Dong Y 2006 Chin. Phys. Lett. 23 2494
[20] Alam M K 1987 Aerosol Sci. Technol. 6 41
[21] Zhang Y, Xu A, Qiu J, Wei H and Wei Z 2020 Front. Phys. 15 62503
[22] Sander S, Gawor S and Fritsching U 2018 Particuology 38 10
[23] Li Z and Wang H 2003 Phys. Rev. E 68 061206
[24] Li Z and Wang H 2004 Phys. Rev. E 70 021205
[25] Wang J and Li Z 2012 Phys. Rev. E 86 011201
[26] Luo S, Wang J, Yu S, Xia G and Li Z 2018 J. Fluid Mech. 846 392
[27] Rajput N 2015 IJAET 7 1806
[28] Thiesen B and Jordan A 2008 Int. J. Hyperthermia 24 467
[29] Bobo D, Robinson K J, Islam J, Thurecht K J and Corrie S R 2016 Pharm. Res. 33 2373
[30] Li T, Kheifets S and Raizen M G 2011 Nat. Phys. 7 527
[31] Yuan Y, Li S, Xu Y and Yao Q 2017 Fuel 201 93
[32] Xi Q, Li Y, Zhou J, Li B and Liu J 2019 Int. J. Mod. Phys. C 30 1950024
[33] Chernyak V G and Sograbi T V 2018 J. Aerosol Sci. 128 62
[34] Wang J, Su J and Xia G 2020 Phys. Rev. E 10 013103
[35] Loesche C, Wurm G, Jankowski T and Kuepper M 2016 J. Aerosol Sci. 97 22
[36] Loesche C and Husmann T 2016 J. Aerosol Sci. 102 55
[37] Bird G A 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (London: Oxford University Press)
[38] Wang C, Friedlander S K and Mädler L 2005 China Particuol. 3 243
[39] Gieseler J, Deutsch B, Quidant R and Novotny L 2012 Phys. Rev. Lett. 109 103603
[40] Mädler L and Friedlander S K 2007 Aerosol Air Qual. Res. 7 304
[41] Hirschfelder J O, Curtiss C F and Bird R B 1954 Molecular Theory of Gases and Liquids (New York: John Wiley and Sons)
[42] Li Z and Wang H 2003 Phys. Rev. E 68 061207
[43] Millikan R A 1923 Phys. Rev. 21 217
[44] Millikan R A 1923 Phys. Rev. 22 1
[45] Wang H 2009 Ann. N. Y. Acad. Sci. 1161 484
[46] Liu C and Wang H 2019 Phys. Rev. E 99 042127
[47] Rudyak V Y, Krasnolutskii S L, Nasibulin A G and Kauppinen E 2002 Dokl. Phys. 47 758
[48] Wong R Y M, Liu C, Wang J, Chao C Y H and Li Z 2012 J. Nanosci. Nanotechnol. 12 2311
[49] Agrawal P M, Rice B M and Thompson D L 2002 Surf. Sci. 515 21
[50] Hippler H, Troe J and Wendelken H J 1983 J. Chem. Phys. 78 6709
[51] Wang Y, Liu Y and Zhang L 2019 Acta Phys. Sin. 68 166402 (in Chinese)
[1] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[2] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[3] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[4] Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles
Bochao Li(李博超), Hao Li(李浩), Chang Yang(杨畅), Boyu Ji(季博宇), Jingquan Lin(林景全), and Toshihisa Tomie(富江敏尚). Chin. Phys. B, 2021, 30(11): 114214.
[5] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[6] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[7] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[8] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[9] Effect of C60 nanoparticles on elasticity of small unilamellar vesicles composed of DPPC bilayers
Tanlin Wei(魏坦琳), Lei Zhang(张蕾), Yong Zhang(张勇). Chin. Phys. B, 2020, 29(4): 048702.
[10] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
[11] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[12] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[13] Sintering reaction and microstructure of MAl (M = Ni, Fe, and Mg) nanoparticles through molecular dynamics simulation
Yuwen Zhang(张宇文), Yonghe Deng(邓永和), Qingfeng Zeng(曾庆丰), Dadong Wen(文大东), Heping Zhao(赵鹤平), Ming Gao(高明), Xiongying Dai(戴雄英), and Anru Wu(吴安如)$. Chin. Phys. B, 2020, 29(11): 116601.
[14] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[15] Supersonic boundary layer transition induced by self-sustaining dual jets
Qiang Liu(刘强), Zhenbing Luo(罗振兵), Xiong Deng(邓雄), Zhiyong Liu(刘志勇), Lin Wang(王林), Yan Zhou(周岩). Chin. Phys. B, 2020, 29(1): 014704.
No Suggested Reading articles found!