Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 076106    DOI: 10.1088/1674-1056/abf349
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural modulation and physical properties of cobalt-doped layered La2M5As3O2 (M= Cu, Ni) compounds

Lei Yang(杨蕾)1,2, Yan-Peng Song(宋艳鹏)2,3, Jun-Jie Wang(王俊杰)2,3, Xu Chen(陈旭)2,3, Hui-Jing Du(杜会静)1,†, and Jian-Gang Guo(郭建刚)2,4,‡
1 Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We investigate the structural variation and physical properties of layered La2M5As3O2 (M=Cu, Ni) compound upon Co doping. It is found that the substitution of Co ion just induces the monotonous change of lattice constants without observing the anomalous kink in superconducting La2(Cu1-xNix)5As3O2 solid-solutions. Meanwhile, this doping barely changes As-As bond length in [M5As3]2- subunit (±2%), being significantly smaller than 7% shrinkage of that in La2(Cu1-xNix)5As3O2. Therefore, the doping dependence of crystal structure exhibits similar trend with Ba1-xKxFe2As2 without the interference of As1-As2 bonding, implying that the Co substitution for Cu/Ni is hole-doped. In terms of physical property, La2(Cu1-xCox)5As3O2 turns into itinerant ferromagnetic metal, while La2(Ni1-xCox)5As3O2 shows paramagnetism and suppressed structural phase transition upon Co-doping. The distinct structural variation and absence of superconductivity provide important clues to understand the effect of As-As bond in [M5As3]2- subunit.
Keywords:  crystal structure      As-As covalent bond      transport property  
Received:  26 February 2021      Revised:  27 March 2021      Accepted manuscript online:  30 March 2021
PACS:  61.50.-f (Structure of bulk crystals)  
  72.15.-v (Electronic conduction in metals and alloys)  
  75.20.En (Metals and alloys)  
  74.70.Dd (Ternary, quaternary, and multinary compounds)  
Fund: Projected supported by the National Natural Science Foundation of China (Grant Nos. 51922105 and 51772322), the National Key Research and Development Program of China (Grant Nos. 2017YFA0304700 and 2016YFA0300600), and the Beijing Natural Science Foundation, China (Grant No. Z200005).
Corresponding Authors:  Hui-Jing Du, Jian-Gang Guo     E-mail:  hjdu@ysu.edu.cn;jgguo@iphy.ac.cn

Cite this article: 

Lei Yang(杨蕾), Yan-Peng Song(宋艳鹏), Jun-Jie Wang(王俊杰), Xu Chen(陈旭), Hui-Jing Du(杜会静), and Jian-Gang Guo(郭建刚) Structural modulation and physical properties of cobalt-doped layered La2M5As3O2 (M= Cu, Ni) compounds 2021 Chin. Phys. B 30 076106

[1] Bednorz J G and Mueller K 1986 Z. Phys. B 64 189
[2] Yang C, Liu Y, Wang Y, Feng L, He Q, Sun J, Tang Y, Wu C C, Xiong J, Zhang W L, Lin X, Yao H, Liu H W, Fernandes G, Xu J, Valles J, Wang J and Li Y R 2019 Science 366 1505
[3] Ai P, Gao Q, Liu J, Zhang Y X, Li C, Huang J W, Song C Y, Yan H T, Zhao L, Liu G D, Gu G D, Zhang F F, Yang F, Peng Q J, Xu Z Y and Zhou X J 2019 Chin. Phys. Lett. 36 067402
[4] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am.Chem. Soc. 130 3296
[5] Rotter M, Tegel M and Johrend D 2008 Phys. Rev. Lett. 101 107006
[6] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[7] Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 Phys. Rev. B 82 180520
[8] Lai X F, Zhang H, Wang Y Q, Wang X, Zhang X, Lin J H and Huang F Q 2015 J. Am. Chem. Soc. 137 10148
[9] Wang C W, Wang M X, Jiang J, Yang H F, Yang L X, Shi W J, Lai X F, Mo S K, Barinov A, Yan B H, Liu Z, Huang F Q, Jia J F, Liu Z K and Chen Y L 2020 Chin. Phys. B 29 047401
[10] Zhang S Y, Miao G Y, Guan J Q, Xu X F, Liu B, Yang F, Wang W H, Zhu X T and Guo J D 2019 Chin. Phys. Lett. 36 107404
[11] Ren Z A, Lu W, Yang J, Yi W, X. Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[12] Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Hirata K, Terashima T and Matsuda Y 2010 Phys. Rev. B 81 184519
[13] Dai P C, Hu J P and Dagotto E 2012 Nat. Phys. 8 709
[14] Chu J H, Analytis J G, Greve K D, McMahon P L, Islam Z, Yamamoto Y and Fisher I R 2010 Science 329 824
[15] Sun R J, Jin S F, Deng J, Hao M N, Zhao L L, Fan X, Sun X N, Guo J G and Gu L 2019 Chin. Phys. B 28 067401
[16] Ni S L, Hu W, Shen P P, Wei Z X, Liu S B, Li D, Yuan, J, Yu L, Jin K, Zhou F, Dong X L and Zhao Z X 2019 Chin. Phys. B 28 127401
[17] Ni N, Tillman M E, Yan J Q, Kracher A, Hannahs S T, Bud'ko S L and Canfield P C 2008 Phys. Rev. B 78 214515
[18] Canfield P C, Bud'ko S L, Ni Ni, Yan J Q and Kracher A 2009 Phys. Rev. B 80 060501
[19] Chen H, Ren Y, Qiu Y, Bao W, Liu R H, Wu G, Wu T, Xie Y L, Wang X F, Huang Q and Chen X H 2009 Euorphys. Lett. 85 17006
[20] Wang L, Hardy F, Böhmer A E, Wolf T, Schweiss P and Meingast C 2016 Phys. Rev. B 93 014514
[21] Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud'ko S L, Canfield P C and Hannahs S T 2010 Phys. Rev. B 82 024519
[22] Liu Y, Wang G, Ying T, Lai X, Jin S, Liu N, Hu J and Chen X 2016 Advanced Science 3 1600098
[23] Chen X, Guo J G, Gong C S, Cheng E J, Le C C, Liu N, Ying T P, Zhang Q H, Hu J P, Li S Y and Chen X L 2019 Science 14 171
[24] Yakita H, Ogino H, Okada T, Yamamoto A, Kishio K, Tohei T, Ikuhara Y, Gotoh Y, Fujihisa H, Kataoka K, Eisaki H and Shimoyama J I 2014 J. Am. Chem. Soc. 136 846
[25] Jia S, Jiramongkolchai P, Suchomel M R, Toby B H, Checkelsky J G, Ong N P and Cava R J 2011 Nat. Phys. 7 207
[26] Chen X, Guo J G, Gong C S, Cheng E J, Song Y P, Ying T P, Deng J, Li S Y and Chen X L 2019 Inorganic Chemistry 58 2770
[27] Rodríguez-Carvajal J 1993 Physica B 192 55
[28] Rotter M, Pangerl M, Tegel M and Johrendt D 2008 Cheminform 47 7949
[29] Sefat A S, Jin R, Mcguire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004
[30] Shen S J, Wang G, Jin S F, Huang Q Z, Ying T P, Li D D, Lai X F, Zhou T T, Zhang H, Lin Z P, Wu X Z and Cen X L 2014 Chem. Mater. 26 6221
[31] Ideta S, Yoshida T, Nishi I, Fujimori A, Kotani Y, Ono K, Nakashima Y, Yamaichi S, Sasagawa T, Nakajima M, Kihou K, Tomioka Y, Lee C H, Iyo A, Eisaki H, Ito T, Uchida S and Arita R 2013 Phys. Rev. Lett. 110 107007
[32] Kim M G, Lamsal J, Heitmann T W, Tucker G S, Pratt D K, Khan S N, Lee Y B, Alam A, Thaler A, Ni N, Ran S, Bud'ko S L, Marty K J, Lumsden M D, Canfield P C, Harmon B N, Johnson D D, Kreyssig A, McQueeney R J, and Goldmanet A I 2012 Phys. Rev. Lett. 109 167003
[1] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[2] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[3] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[4] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[5] Progress in functional studies of transition metal borides
Teng Ma(马腾), Pinwen Zhu(朱品文), and Xiaohui Yu(于晓辉). Chin. Phys. B, 2021, 30(10): 108103.
[6] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[7] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[8] Isostructural phase transition-induced bulk modulus multiplication in dopant-stabilized ZrO2 solid solution
Min Wang(王敏), Wen-Shu Shen(沈文舒), Xiao-Dong Li(李晓东), Yan-Chun Li(李延春), Guo-Zhao Zhang(张国召), Cai-Long Liu(刘才龙), Lin Zhao(赵琳), Shu-Peng Lv(吕舒鹏), Chun-Xiao Gao(高春晓), Yong-Hao Han(韩永昊). Chin. Phys. B, 2019, 28(7): 076109.
[9] Structural and electrical transport properties of Dirac-like semimetal PdSn4 under high pressure
Bowen Zhang(张博文), Chao An(安超), Yonghui Zhou(周永惠), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Chunhua Chen(陈春华), Yifang Yuan(袁亦方), Zhaorong Yang(杨昭荣). Chin. Phys. B, 2019, 28(12): 126202.
[10] Discovery of superhard materials via CALYPSO methodology
Shuangshuang Zhang(张爽爽), Julong He(何巨龙), Zhisheng Zhao(赵智胜), Dongli Yu(于栋利), Yongjun Tian(田永君). Chin. Phys. B, 2019, 28(10): 106104.
[11] The CALYPSO methodology for structure prediction
Qunchao Tong(童群超), Jian Lv(吕健), Pengyue Gao(高朋越), Yanchao Wang(王彦超). Chin. Phys. B, 2019, 28(10): 106105.
[12] Geoscience material structures prediction via CALYPSO methodology
Andreas Hermann. Chin. Phys. B, 2019, 28(10): 106107.
[13] Exploration of the structural and optical properties of a red-emitting phosphor K2TiF6:Mn4+
Xi-Long Dou(豆喜龙), Xiao-Yu Kuang(邝小渝), Xin-Xin Xia(夏欣欣), Meng Ju(巨濛). Chin. Phys. B, 2019, 28(1): 017107.
[14] Effect of Hf4+ doping on structure and enhancement of upconversion luminescence in Yb: Tm: LiNbO3 crystals
Li Dai(代丽), Chunrui Liu(刘春蕊), Xianbo Han(韩县博), Luping Wang(王路平), Yu Shao(邵瑀), Yuheng Xu(徐玉恒). Chin. Phys. B, 2018, 27(11): 114217.
[15] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
No Suggested Reading articles found!