Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 107801    DOI: 10.1088/1674-1056/abf130
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs

Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇)
Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  Based on the transport theory and the polarization relaxation model, the effects of hydrogen and hydroxyl passivation on the conductivity and dielectric properties of silicon carbide nanowires (SiCNWs) with different sizes are numerically simulated. The results show that the variation trend of conductivity and band gap of passivated SiCNWs are opposite to the scenario of the size effect of bare SiCNWs. Among the influencing factors of conductivity, the carrier concentration plays a leading role. In the dielectric properties, the bare SiCNWs have a strong dielectric response in the blue light region, while passivated SiCNWs show a more obvious dielectric response in the far ultraviolet-light region. In particular, hydroxyl passivation produces a strong dielectric relaxation in the microwave band, indicating that hydroxyl passivated SiCNWs have a wide range of applications in electromagnetic absorption and shielding.
Keywords:  silicon carbide nanowires      passivation      conductance properties      dielectric relaxation  
Received:  12 January 2021      Revised:  22 February 2021      Accepted manuscript online:  24 March 2021
PACS:  78.67.Uh (Nanowires)  
  81.65.Rv (Passivation)  
  87.16.Uv (Active transport processes)  
  77.22.Gm (Dielectric loss and relaxation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574261) and the Natural Science Foundation of Hebei Province, China (Grant No. A2021203030).
Corresponding Authors:  Xiao-Yong Fang     E-mail:  fang@ysu.edu.cn

Cite this article: 

Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇) Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs 2021 Chin. Phys. B 30 107801

[1] Konstantinos T, Thibaut B, Ni Y, Samy M, Xanthippi Z, Yann C, Patrice C and Sebastian V 2013 Phys. Rev. B 87 125410
[2] Cheng G, Chang T H, Qin Q, Huang H and Zhu Y 2014 Nano Lett. 14 754
[3] Casady J B and Johnson R W 1996 Solid State Electron 39 1409
[4] Edmond J A 1988 J. Electrochem. Soc. 135 2393
[5] Raynaud C 2001 J. Non-Cryst. Solids 280 1
[6] Fan X, Ye R, Peng Z, Wang J, Fan A and Guo X 2016 Nanotechnology 27 255604
[7] Kityk I V, Makowska-Janusik M, Kassiba A and Plucinski K J 2000 Opt. Mater. 13 449
[8] Yang Y Y, Gong P, Ma W D, Hao R and Fang X Y 2021 Chin. Phys. B 30 067803
[9] Xin X, Yan F, Koeth T W, Joseph C, Hu J, Wu J and Zhao J H 2005 Electron. Lett. 41 1192
[10] Trew R J, Yan J B and Mock P M 1991 Proc. IEEE 79 598
[11] Pham-Huu C, Keller N, Ehret G and Ledoux M J 2001 J. Catal. 200 400
[12] Gong P, Yang Y Y, Ma W D, Fang X Y, Jing X L, Jia Y H and Cao M S 2021 Physica E 128 114578
[13] Ma W D, Liu W K, Gong P, Jia Y H, Yang Y Y and Fang X Y 2021 Int. J. Mod. Phys. B 35 2150207
[14] Gendron F and Porter L M 1995 Appl. Phys. Lett. 67 1253
[15] Trejo A, Calvino M and Cruz-Irisson M 2010 Int. J. Quantum Chem. 110 2455
[16] Cuevas J L, Trejo A, Calvino M, Carvajal E and Cruz-Irisson M 2012 Appl. Surf. Sci. 258 8360
[17] Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H and Cao M S 2018 Physica B 539 72
[18] Cuevas J L, De Santiago F, Ramírez J, Trejo A, Mirandaá, Pérez L A and Cruz-Irisson M 2018 Comp. Mater. Sci. 142 268
[19] Javan M B 2015 Physica B 456 321
[20] Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y and Cao M S 2020 Phys. Lett. A 384 126106
[21] Li Y L, Gong P and Fang X Y 2020 Chin. Phys. B 29 037304
[22] Li S L, Yu X X, Li Y L, Gong P, Jia Y H, Fang X Y and Cao M S 2019 Eur. Phys. J. B 92 155
[23] Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H and Cao M S 2018 Physica E 104 247
[24] Gong P, Yang Y Y, Ma W D, Fang X Y, Jing X L and Cao M S 2021 Opt. Mater. 117 111148
[1] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[2] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[3] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[4] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[5] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[6] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[7] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[8] Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer
Xiangwei Qu(瞿祥炜), Jingrui Ma(马精瑞), Siqi Jia(贾思琪), Zhenghui Wu(吴政辉), Pai Liu(刘湃), Kai Wang(王恺), and Xiao-Wei Sun(孙小卫). Chin. Phys. B, 2021, 30(11): 118503.
[9] Surface passivation in n-type silicon and its application insilicon drift detector
Yiqing Wu(吴怡清), Ke Tao(陶科), Shuai Jiang(姜帅), Rui Jia(贾锐), Ye Huang(黄也). Chin. Phys. B, 2020, 29(3): 037702.
[10] A 9% efficiency of flexible Mo-foil-based Cu2ZnSn(S, Se)4 solar cells by improving CdS buffer layer and heterojunction interface
Quan-Zhen Sun(孙全震), Hong-Jie Jia(贾宏杰), Shu-Ying Cheng(程树英), Hui Deng(邓辉)\ccclink, Qiong Yan(严琼), Bi-Wen Duan(段碧雯), Cai-Xia Zhang(张彩霞), Qiao Zheng(郑巧), Zhi-Yuan Yang(杨志远), Yan-Hong Luo(罗艳红), Qing-Bo Men(孟庆波), and Shu-Juan Huang(黄淑娟). Chin. Phys. B, 2020, 29(12): 128801.
[11] Improving the performance of crystalline Si solar cell by high-pressure hydrogenation
Xi-Yuan Dai(戴希远), Yu-Chen Zhang(张宇宸), Liang-Xin Wang(王亮兴), Fei Hu(胡斐), Zhi-Yuan Yu(于志远), Shuai Li(李帅), Shu-Jie Li(李树杰), Xin-Ju Yang(杨新菊), and Ming Lu(陆明). Chin. Phys. B, 2020, 29(11): 118801.
[12] The n-type Si-based materials applied on the front surface of IBC-SHJ solar cells
Jianhui Bao(包建辉), Ke Tao(陶科), Yiren Lin(林苡任), Rui Jia(贾锐), Aimin Liu(刘爱民). Chin. Phys. B, 2019, 28(9): 098201.
[13] The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells
Yun-Long Deng(邓云龙), Zhi-Yuan Xu(徐知源), Kai Cai(蔡凯), Fei Ma(马飞), Juan Hou(侯娟), Shang-Long Peng(彭尚龙). Chin. Phys. B, 2019, 28(9): 098802.
[14] Effect of SiN: Hx passivation layer on the reverse gate leakage current in GaN HEMTs
Sheng Zhang(张昇), Ke Wei(魏珂), Yang Xiao(肖洋), Xiao-Hua Ma(马晓华), Yi-Chuan Zhang(张一川), Guo-Guo Liu(刘果果), Tian-Min Lei(雷天民), Ying-Kui Zheng(郑英奎), Sen Huang(黄森), Ning Wang(汪宁), Muhammad Asif, Xin-Yu Liu(刘新宇). Chin. Phys. B, 2018, 27(9): 097309.
[15] Electro-optical properties and (E, T) phase diagram of fluorinated chiral smectic liquid crystals
R Zgueb, H Dhaouadi, T Othman. Chin. Phys. B, 2018, 27(10): 107701.
No Suggested Reading articles found!