Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030504    DOI: 10.1088/1674-1056/abe3e3
RAPID COMMUNICATION Prev   Next  

Transport property of inhomogeneous strained graphene

Bing-Lan Wu(吴冰兰)1, Qiang Wei(魏强)2, Zhi-Qiang Zhang(张智强)1,†, and Hua Jiang(江华)1,3,
1 School of Physics and Technology, Soochow University, Suzhou 215006, China; 2 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 3 Institute for Advanced Study, Soochow University, Suzhou 215006, China
Abstract  In analogy to real magnetic field, the pseudo-magnetic field (PMF) induced by inhomogeneous strain can also form the Landau levels and edge states. In this paper, the transport properties of graphene under inhomogeneous strain are studied. We find that the Landau levels have non-zero group velocity, and construct one-dimensional conducting channels. In addition, the edge states and the Landau level states in PMF are both fragile under disorder. We also confirm that the backscattering of these states could be suppressed by applying a real magnetic filed (MF). Therefore, the transmission coefficient for each conducting channel can be manipulated by adjusting the MF strength, which indicates the application of switching devices.
Keywords:  disorder effect      pseudo-magnetic field      strain      transport properties  
Received:  14 November 2020      Revised:  01 January 2021      Accepted manuscript online:  07 February 2021
PACS:  05.50.+q (Lattice theory and statistics)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2019YFA0308403) and the National Natural Science Foundation of China (Grant No. 11822407).
Corresponding Authors:  Corresponding author. E-mail: zqzhang2018@stu.suda.edu.cn Corresponding author. E-mail: jianghuaphy@suda.edu.cn   

Cite this article: 

Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华) Transport property of inhomogeneous strained graphene 2021 Chin. Phys. B 30 030504

1 Vozmediano M A H, Katsnelson M I and Guinea F 2010 Phys. Rep. 496 109
2 Goerbig M O2011 Rev. Mod. Phys. 83 1193
3 Manes J L, Juan F D, Sturla M and Vozmediano M A H 2013 Phys. Rev. B 87 165131
4 Kitt A L, Pereira V M, Swan A K and Goldberg B B 2012 Phys. Rev. B 85 115432
5 Guinea F, Katsnelson M I and Geim A K 2009 Nat. Phys. 6 30
6 Low T and Guinea F 2010 Nano Lett. 10 3551
7 Moldovan D, Masir M R and Peeters F M 2013 Phys. Rev. B 88 035446
8 Stegmann T and Szpak N2016 New J. Phys. 18 125422
9 Carrillo-Bastos R, Le\'on C, Faria D, Latg\'e A, Andrei E Y and Sandler N 2016 Phys. Rev. B 94 125422
10 Torres V, Faria D and Latg\'e A 2018 Phys. Rev. B 97 165429
11 Zhai F, Ma Y and Chang K 2011 New J. Phys. 13 083029
12 Zhang D B, Seifert G and Chang K 2014 Phys. Rev. Lett. 112 96805
13 Jiang Y, Low T, Chang K, Katsnelson M I and Guinea F 2013 Phys. Rev. Lett. 110 46601
14 Wu Z, Zhai F, Peeters F M, Xu H and Chang K 2011 Phys. Rev. Lett. 106 176802
15 Chaves A, Covaci L, Rakhimov K yu, Farias G A and Peeters F M 2010 Phys. Rev. B. 82 205430
16 Georgiou T, Britnell L, Blake P, Gorbachev R V, Gholinia A, Geim A K, Casiraghi C and Novoselov K S 2011 Appl. Phys. Lett. 99 93103
17 Klimov N N, Jung S, Zhu S, Li T, Wright C A, Solares S D, Newell D B, Zhitenev N B and Stroscio J A 2012 Science 336 1557
18 Jang W J, Kim H, Shin Y R, Wang M, Jang S K, Kim M, Lee S, Kim S W, Song Y J and Kahng S J 2014 Carbon 74 139
19 Lim H, Jung J, Ruoff R S and Kim Y 2015 Nat. Commun. 6 8601
20 Yan H, Sun Y, He L, Nie J C and Chan M H W 2012 Phys. Rev. B 85 35422
21 Nemes-Incze P, Kukucska G, Koltai J, K\'urti J, Hwang C, Tapaszt\'o L and Bir\'o L P 2017 Sci. Rep. 7 3035
22 Neek-Amal M and Peeters F M 2012 Phys. Rev. B 85 195445
23 Neek-Amal M, Covaci L, Shakouri K and Peeters F M 2013 Phys. Rev. B 88 115428
24 Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Neto A H C and Crommie M F 2010 Science 329 544
25 Yeh N C, Teague M L, Yeom S, Standley B L, Wu R T P, Boyd D A and Bockrath M W 2011 Surf. Sci. 605 1649
26 Gomes K K, Mar W, Ko W, Guinea F and Manoharan H C 2012 Nature 483 306
27 Rechtsman M C, Zeuner J M, T\'unnermann A, Nolte S, Segev M and Szameit A 2013 Nat. Photon. 7 153
28 Schomerus H and Halpern N Y 2013 Phys. Rev. Lett. 110 13903
29 Brendel C, Peano V, Painter O and Marquardt F2017 Bulletin of the American Physical Society 2017
30 Abbaszadeh H, Souslov A, Paulose J, Schomerus H and Vitelli V 2017 Phys. Rev. Lett. 119 195502
31 Yang Z, Gao F, Yang Y and Zhang B 2017 Phys. Rev. Lett. 118 194301
32 Wen X, Qiu C, Qi Y, Ye L, Ke M, Zhang F and Liu Z 2019 Nat. Phys. 15 352
33 Thouless D J, Kohmoto M, Nightingale M P and Nijs M D1982 Phys. Rev. Lett. 49 41
34 Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
35 Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
36 Halperin B I 1982 Phys. Rev. B 25 2185
37 Mucha-Kruczynski M and Fal'ko V I 2012 Solid State Commun. 152 1442
38 Gradinar D A, Mucha-Kruczy\'nski M, Schomerus H and Fal'Ko V I 2013 Phys. Rev. Lett. 110 266801
39 Settnes M, Leconte N, Barrios-Vargas J E, Jauho A P and Roche S2016 D Mater. 3 34005
40 Roy B, Hu Z X and Yang K 2013 Phys. Rev. B 87 121408
41 Ghaemi P, Gopalakrishnan S and Ryu S 2013 Phys. Rev. B 87 155422
42 Costa D R da, Chaves A, Farias G A, Covaci L and Peeters F M 2012 Phys. Rev. B 86 115434
43 Mao J, Milovanovi\'c S P, An\=delkovi\'c M, Lai X Y, Cao Y, Watanabe K, Taniguchi T, Covaci L, Peeters F M, and Geim A K 2020 Nature 584 215
44 Settnes M, Garcia J H and Roche S2017 2D Mater. 4 31006
45 Anderson P W 1958 Phys. Rev. 109 1492
46 Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673
47 Pereira V M, Castro Neto A H, Peres N M R 2008 Phys. Rev. B. 80 045401
48 For zigzag graphene, the K and K' valleys are well separated in momentum space.Thus, PMFs for these two valleys are +B and -B, respectively. In contrast, for armchair graphene, both K and K' with opposite PMFs are folded into the \varGamma point, and the strong coupling of the two valleys greatly weaks the strain effect. Therefore, for armchair ribbons, the LLs and the chiral edge states will be formed by applying a real magnetic field, and the strain just tilt the LLs (except the zeroth LL) without affecting the properties of the edge state.
49 Lewenkopf C H and Mucciolo E R 2013 J. Comput. Electron. 12 203
50 Datta S1995 Electronic transport in mesoscopic systems, 2nd Edn.
51 Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
52 Zhang H, Liu C, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
53 Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
54 Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
55 Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S P, Bernevig B A and Neupert T2018 Sci. Adv. 4 6
56 Jiang H, Wang L, Sun Q F and Xie X C 2009 Phys. Rev. B 80 165316
57 Faria D, Le\'on C, Lima L R F, Latg\'e A and Sandler N 2020 Phys. Rev. B 101 81410
[1] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[2] Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles
Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S. Chin. Phys. B, 2021, 30(4): 048202.
[3] Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study
Guoqing Wang(王国庆), Wenjing Qin(秦文静), and Jing Shi(石晶). Chin. Phys. B, 2021, 30(4): 046301.
[4] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[5] Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers
Xiaoyu Hu(胡晓宇), Linlin Mou(牟琳琳), and Zunfeng Liu(刘遵峰). Chin. Phys. B, 2021, 30(1): 018401.
[6] Protein-protein docking with interface residue restraints
Hao Li(李豪) and Sheng-You Huang(黄胜友). Chin. Phys. B, 2021, 30(1): 018703.
[7] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[8] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[9] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[10] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[11] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[12] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[13] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
[14] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[15] Uncovering the internal structure of five-fold twinned nanowires through 3D electron diffraction mapping
Xin Fu(付新). Chin. Phys. B, 2020, 29(6): 068101.
No Suggested Reading articles found!