Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 064205    DOI: 10.1088/1674-1056/abd9b4
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Graphene-tuned threshold gain to achieve optical pulling force on microparticle

Hong-Li Chen(陈鸿莉)1,† and Yang Huang(黄杨)2
1 School of Science, Nantong University, Nantong 226019, China;
2 School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Jiangnan University, Wuxi 214122, China
Abstract  We investigate optical force on a graphene-coated gain microparticle by adopting the Maxwell's stress tensor method. It is found that there exists a threshold gain in obtaining the Fano-profile optical force which indicates the reversal of optical pushing and pulling force. And giant pushing/pulling force can be achieved if the gain value of the material is in the proximity of the threshold gain. Our results show that the threshold gain is more sensitive to the relaxation time than to the Fermi energy of the graphene. We further study the optical force on larger microparticle to demonstrate the pulling force occurring at octupole resonance with small gain value and then it will appear at quadrupole resonance by increasing gain value. Our work provides an in-depth insight into the interaction between light and gain material and gives the additional degree of freedom to optical manipulation of microparticle.
Keywords:  pulling force      threshold gain      graphene      microparticle  
Received:  11 November 2020      Revised:  06 January 2021      Accepted manuscript online:  08 January 2021
PACS:  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  78.67.Wj (Optical properties of graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904184, 11847033, and 11704158) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170170).
Corresponding Authors:  Hong-Li Chen     E-mail:  chenhongli@ntu.edu.cn

Cite this article: 

Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨) Graphene-tuned threshold gain to achieve optical pulling force on microparticle 2021 Chin. Phys. B 30 064205

[1] Chen J, Ng J, Lin Z F and Chan C T 2011 Nat. Photon. 5 531
[2] Novitsky A, Qiu C W and Wang H F 2011 Phys. Rev. Lett. 107 203601
[3] Dogariu A, Sukhov S and Saenz J J 2013 Nat. Photon. 7 24
[4] Gao D L, Novitsky A, Zhang T H, Cheong F C, Gao L, Lim C T, Luk'yanchuk B and Qiu C W 2015 Laser Photon. Rev. 9 75
[5] Zhang L, Qiu X D, Zeng L W and Chen L X 2019 Chin. Phys. B 28 094202
[6] Ling L, Guo H L, Huang L, Qu E, Li Z L and Li Z Y 2012 Chin. Phys. Lett. 29 014214
[7] Guo G T, Feng T H and Xu Y 2018 Opt. Lett. 43 4961
[8] Lee E, Huang D Z and Luo T F 2020 Nat. Commun. 11 2404
[9] Novitsky A and Qiu C W 2014 Phys. Rev. A 90 053815
[10] Ding K, Ng J, Zhou L and Chan C T 2014 Phys. Rev. A 89 063825
[11] Li G P, Wang M Y, Li H L, Yu M X, Dong Y L and Xu J 2016 Opt. Mater. Express 6 388
[12] Wang M Y, Li H L, Gao D L, Gao L, Xu J and Qiu C W 2015 Opt. Express 23 16546
[13] Shalin A S, Sukhov S V, Bogdanov A A, Belov P A and Ginzburg P 2015 Phys. Rev. A 91 063830
[14] Chen H L, Gao L, Zhong C G, Yuan G Q, Huang Y Y, Yu Z W, Cao M and Wang M 2020 AIP Adv. 10 015131
[15] Duan X Y and Wang Z G 2017 Phys. Rev. A 96 053811
[16] Mizrahi A and Fainman Y 2010 Opt. Lett. 35 3405
[17] Chen H J, Ye Q, Zhang Y W, Shi L, Liu S Y, Jian Z and Lin Z F 2017 Phys. Rev. A 96 023809
[18] Song C Z, Yang S Z, Li X M, Li X, Feng J, Pan A L, Wang W L, Xu Z and Bai X D 2019 Chin. Phys. B 28 054204
[19] Wang H C and Li Z P 2019 Acta Phys. Sin. 68 144101 (in Chinese)
[20] Li S, Li H Z, Xu J P, Zhu C J and Yang Y P 2019 Acta Phys. Sin. 68 174202 (in Chinese)
[21] Gu K H, Yan D, Zhang M L, Yin J Z and Fu C B 2019 Acta Phys. Sin. 68 054201 (in Chinese)
[22] Zhang X L, Bao Q Q, Yang M Z and Tian X S 2018 Acta Phys. Sin. 67 104203 (in Chinese)
[23] Gao D L, Shi R, Huang Y and Gao L 2017 Phys. Rev. A 96 043826
[24] Bian X, Gao D L and Gao L 2017 Opt. Express 25 24566
[25] Chen H J, Liu S Y, Zi J and Lin Z F 2015 ACS Nano 9 1926
[26] Craciun M F, Russo S, Yamamoto M and Tarucha S 2011 Nano Today 6 42
[27] Naserpour M, Zapata-Rodriguez C J, Vukovic, S M, Pashaeiadl H and Belic M R 2017 Sci. Rep. 7 12186
[28] Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401
[29] Constant T J, Hornett S M, Chang D E and Hendry E 2016 Nat. Phys. 12 124
[30] Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-Gonzaolez P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R and Koppens F H L 2015 Nat. Mater. 14 421
[31] Brar V W, Jang M S, Sherrott M, Lopez J J and Atwater H A 2013 Nano Lett. 13 2541
[32] Ansell D, Radko I P, Han Z, Rodriguez F J, Bozhevolnyi S I and Grigorenko A N 2015 Nat. Commun. 6 8846
[33] Brar V W, Sherrott M C, Jang M S, Kim S, Kim L, Choi M, Sweatlock L A and Atwater H A 2015 Nat. Commun. 6 7032
[34] Low T and Avouris P 2014 ACS Nano 8 1086
[35] de Abajo F J G 2014 ACS Photon. 1 135
[36] He X Y, Gao P Q and Shi W Z 2016 Nanoscale 8 10388
[37] Jablan M, Soljacic M and Buljan H 2013 Proc. IEEE 101 1689
[38] Rodrigo D, Limaj O, Janner D, Etezadi D, de Abajo F J G, Pruneri V and Altug H 2015 Science 349 165
[39] Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L and Wen S C 2017 Opt. Lett. 42 3052
[40] Chen H L and Huang Y 2020 Phys. Lett. A 384 126733
[41] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
[42] Strangi G, De Luca A, Ravaine S, Ferrie M and Bartolino R 2011 Appl. Phys. Lett. 98 251912
[43] Campione S, Albani M and Capolino F 2011 Opt. Mater. Express 1 1077
[44] Fang A A, Huang Z X, Koschny T and Soukoulis C M 2011 Opt. Express 19 12688
[45] Li R J, Wang H P, Zheng B, Dehdashti S, Li E P and Chen H S 2017 Nanoscale 9 8449
[46] Hou X R, Gao D L and Gao L 2019 AIP Adv. 9 035154
[47] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: John Wiley and Sons) p. 89
[48] Zhang K, Huang Y, Miroshnichenko A E and Gao L 2017 J. Phys. Chem. C 121 11804
[1] Direct growth of graphene films without catalyst on flexible glass substrates by PECVD
Rui-Xia Miao(苗瑞霞), Chen-He Zhao(赵晨鹤), Shao-Qing Wang(王少青), Wei Ren(任卫), Yong-Feng Li(李永锋), Ti-Kang Shu(束体康), and Ben Yang(杨奔). Chin. Phys. B, 2021, 30(9): 098101.
[2] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[3] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[4] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[5] Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超). Chin. Phys. B, 2021, 30(8): 088801.
[6] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[7] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[8] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[9] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[10] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[11] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[12] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[13] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[14] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[15] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
No Suggested Reading articles found!