Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 033201    DOI: 10.1088/1674-1056/abd772
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Scheme to measure the expectation value of a physical quantity in weak coupling regime

Jie Zhang(张杰)1,2, Chun-Wang Wu(吴春旺)1,2, Yi Xie(谢艺)1,2, Wei Wu(吴伟)1,2, and Ping-Xing Chen(陈平形)1,2,
1 Department of Physics, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China; 2 Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China
Abstract  In quantum mechanics, the expectation value of an operator can be measured by using the projective measurement, if the coupling between the measured system and pointer is strong enough. However in the weak coupling regime, the pointer can not show all the eigenvalue of the physical quantity directly due to the overlapping among the pointer states, which makes the measurement of the expectation value difficult. In this paper, we propose an expectation value measurement method in the weak coupling regime inspired by the weak measurement scheme. Compared to the projective measurement, our scheme has two obvious advantages. Experimentally we use the internal state and motional state of a single trapped 40Ca+ to establish the measurement scheme and realize the proof of principle demonstration of the scheme.
Keywords:  weak measurement      expectation value      trapped ions  
Received:  15 October 2020      Revised:  13 November 2020      Accepted manuscript online:  30 December 2020
PACS:  32.80.Qk (Coherent control of atomic interactions with photons)  
  03.65.Wj (State reconstruction, quantum tomography)  
  03.75.Be (Atom and neutron optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004430 and 61632021) and the National Basic Research Program of China (Grant No. 2016YFA0301903).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形) Scheme to measure the expectation value of a physical quantity in weak coupling regime 2021 Chin. Phys. B 30 033201

1 Braginsky V B, Khalili F Y and Thorne K S1995 Quantum Measurement (Cambridge: Cambridge University Press)
2 Neumann J V1932 Mathematical Foundations of Quantum Mechanics (Berlin: Springer Press)
3 Thekkadath G S, Giner L, Chalich Y, Horton M J, Banker J and Lundeen J S 2016 Phys. Rev. Lett. 117 120401
4 Peres A Quantum Theory: Concepts and Methods(Dordrecht: Kluwer)
5 Preskill J preskill/ph2291998 Quantum Information and Computation (lecture notes for physics 229) California Institute of Technology
6 Araneda G, Walser S, et al. \href 2019 Nat. Phys. 15 17
7 Zou W J, Li Y H, Wang S C, Cao Y, Ren J G, Yin J, Peng C Z, Wang X B and Pan J W 2017 Phys. Rev. A 95 042342
8 Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
9 Romito A, Gefen Y and Blanter Y M 2008 Phys. Rev. Lett. 100 056801
10 Zilberberg O, Romito A and Gefen Y 2011 Phys. Rev. Lett. 106 080405
11 Groen J P, Riste D, Tornberg L, Cramer J, de Groot P C, Picot T, Johansson G and DiCarlo L 2013 Phys. Rev. Lett. 111 090506
12 Lu D, Brodutch A, Li J, et al. 2014 New J. Phys. 16 053015
13 Denkmayr T, Geppert H, Lemmel H, Waegell M, Dressel J, Hasegawa Y and Sponar S 2017 Phys. Rev. Lett. 118 010402
14 Shomroni I, Bechler O, Rosenblum S and Dayan B 2013 Phys. Rev. Lett. 111 023604
15 Zhang M and Zhu S Y 2015 Phys. Rev. A 92 043825
16 Hosten O and Kwiat P 2008 Science 319 787
17 Dixon P B, Starling D J, Jordan A N and Howell J C 2009 Phys. Rev. Lett. 102 173601
18 Xu L, Liu Z X, Datta A, Knee G C, Lundeen J S, Lu Y Q and Zhang L J 2020 Phys. Rev. Lett. 125 080501
19 Wallentowitz S and Vogel W 1995 Phys. Rev. Lett. 75 2932
20 Gerritsma R, Kirchmair G, et al. 2010 Nature 463 68
21 Z\"ahringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104 100503
22 Pan Y M, Zhang J, Cohen E, Wu C W, Chen P X and Davidson N 2020 Nat. Phys. 16 1206
23 Wu C W, Zhang J, Xie Y, Ou B Q, Chen T, Wu W and Chen P X 2019 Phys. Rev. A 100 062111
[1] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[2] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[3] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[4] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[5] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[6] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik$. Chin. Phys. B, 2020, 29(11): 110301.
[7] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[8] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[9] Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏). Chin. Phys. B, 2016, 25(8): 080310.
[10] Weak value amplification via second-order correlated technique
Ting Cui(崔挺), Jing-Zheng Huang(黄靖正), Xiang Liu(刘翔), Gui-Hua Zeng(曾贵华). Chin. Phys. B, 2016, 25(2): 020301.
[11] Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal
Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2016, 25(11): 110303.
[12] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang, Xia Yun-Jie, Duan De-Yang, Zhang Lu, Gao Qiang. Chin. Phys. B, 2015, 24(4): 044205.
[13] Dynamics of super-quantum discord and direct control with weak measurement in open quantum system
Ji Ying-Hua. Chin. Phys. B, 2015, 24(12): 120302.
[14] Multi-ion Mach–Zehnder interferometer with artificial nonlinear interactions
Hu Yan-Min, Yang Wan-Li, Xiao Xing, Feng Mang, Li Chao-Hong. Chin. Phys. B, 2014, 23(3): 034205.
[15] Preserving entanglement and the fidelity of three-qubit quantum states undergoing decoherence using weak measurement
Liao Xiang-Ping, Fang Mao-Fa, Fang Jian-Shu, Zhu Qian-Quan. Chin. Phys. B, 2014, 23(2): 020304.
No Suggested Reading articles found!