Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 020306    DOI: 10.1088/1674-1056/abd761
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
TOPICAL REVIEW—Quantum computation and quantum simulation Prev   Next  

Selected topics of quantum computing for nuclear physics

Dan-Bo Zhang(张旦波)1,2, Hongxi Xing(邢宏喜)3,4, Hui Yan(颜辉)1,2, Enke Wang(王恩科)3,4, and Shi-Liang Zhu(朱诗亮)1,2,
1 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China; 2 Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China; 3 Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China; 4 Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Southern Nuclear Science Computing Center, South China Normal University, Guangzhou 510006, China
Abstract  Nuclear physics, whose underling theory is described by quantum gauge field coupled with matter, is fundamentally important and yet is formidably challenge for simulation with classical computers. Quantum computing provides a perhaps transformative approach for studying and understanding nuclear physics. With rapid scaling-up of quantum processors as well as advances on quantum algorithms, the digital quantum simulation approach for simulating quantum gauge fields and nuclear physics has gained lots of attention. In this review, we aim to summarize recent efforts on solving nuclear physics with quantum computers. We first discuss a formulation of nuclear physics in the language of quantum computing. In particular, we review how quantum gauge fields (both Abelian and non-Abelian) and their coupling to matter field can be mapped and studied on a quantum computer. We then introduce related quantum algorithms for solving static properties and real-time evolution for quantum systems, and show their applications for a broad range of problems in nuclear physics, including simulation of lattice gauge field, solving nucleon and nuclear structures, quantum advantage for simulating scattering in quantum field theory, non-equilibrium dynamics, and so on. Finally, a short outlook on future work is given.
Keywords:  quantum computing      nuclear physics      quantum field theory      quantum simulation      quantum algorithm  
Received:  29 October 2020      Revised:  05 December 2020      Accepted manuscript online:  30 December 2020
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  21.60.-n (Nuclear structure models and methods)  
Fund: Project supported by the Key-Area Research and Development Program of GuangDong Province, China (Grant No. 2019B030330001), Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030008), the National Natural Science Foundation of China (Grant Nos. 12074180, 12005065, 12022512, and 12035007), the Key Project of Science and Technology of Guangzhou (Grant Nos. 201804020055 and 2019050001), and the National Key Research and Development Program of China (Grant No. 2016YFA0301800).
Corresponding Authors:  Corresponding author. E-mail: slzhu@nju.edu.cn   

Cite this article: 

Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮) Selected topics of quantum computing for nuclear physics 2021 Chin. Phys. B 30 020306

1 Peskin M and Schroeder D1995 An introduction to quantum field theory
2 Wilson K G 1974 Phys. Rev. D 10 2445
3 Kogut J and Susskind L 1975 Phys. Rev. 11 395
4 Kogut J B 1983 Rev. Mod. Phys. 55 775
5 McLerran L D and Svetitsky B 1981 Phys. Lett. 98 195
6 Troyer M and Wiese U J 2005 Phys. Rev. Lett. 94 170201
7 Silvi P, Rico E, Calarco T and Montangero S 2014 New J. Phys. 16 103015
8 Tagliacozzo L, Celi A and Lewenstein M 2014 Phys. Rev. X 4 041024
9 Rico E, Pichler T, Dalmonte M, Zoller P and Montangero S 2014 Phys. Rev. Lett. 112 201601
10 K\"uhn S, Zohar E, Cirac J I and Ba\ uls M C 2015 J. High Energy Phys. 2015 130
11 Buyens B, Verstraete F and Van Acoleyen K 2016 Phys. Rev. D 94 085018
12 Ba\ uls M C, Cichy K, Cirac J I, Jansen K and K\"uhn S 2017 Phys. Rev. X 7 041046
13 Silvi P, Sauer Y, Tschirsich F and Montangero S 2019 Phys. Rev. D 100 074512
14 Emonts P and Zohar E 2020 SciPost Phys. Lect. Notes 12
15 Feynman R 1982 Int. J. Theor. Phys. 21 467
16 Lloyd S 1996 Science 273 1073
17 Nielsen M A and Chuang I L2010 Quantum Computation and Quantum Information, 10th Anniversary Edition (Cambridge University Press)
18 Aspuru-Guzik A, Dutoi A D, Love P J and Head-Gordon M 2005 Science 309 1704
19 Preskill J 2018 Quantum 2 79
20 Yung M H, Casanova J, Mezzacapo A, McClean J, Lamata L, Aspuru-Guzik A and Solano E 2014 Scientific Reports 4 3589
21 McClean J R, Romero J, Babbush R and Aspuru-Guzik A 2016 New J. Phys. 18 023023
22 O'Malley P J J, Babbush R, Kivlichan I D, Romero J, McClean J R, Barends R, Kelly J, Roushan P, Tranter A, Ding N, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Fowler A G, Jeffrey E, Lucero E, Megrant A, Mutus J Y, Neeley M, Neill C, Quintana C, Sank D, Vainsencher A, Wenner J, White T C, Coveney P V, Love P J, Neven H, Aspuru-Guzik A and Martinis J M 2016 Phys. Rev. X 6 031007
23 Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M and Gambetta J M 2017 Nature 549 242
24 Grimsley H R, Economou S E, Barnes E and Mayhall N J 2019 Nat. Commun. 10 3007
25 Arute F et al.Arute F 2020 Hartree-fock on a superconducting qubit quantum computer (Preprint 2004.04174)
26 Liu J G, Zhang Y H, Wan Y and Wang L 2019 Phys. Rev. Research 1 023025
27 Kokail C, Maier C, van Bijnen R, Brydges T, Joshi M K, Jurcevic P, Muschik C A, Silvi P, Blatt R, Roos C F and Zoller P 2019 Nature 569 355
28 Dallaire-Demers P L, Stchy M, Gonthier J F, Bashige N T, Romero J and Cao Y 2020 An application benchmark for fermionic quantum simulations (Preprint 2003.01862)
29 Anschuetz E R, Olson J P, Aspuru-Guzik A and Cao Y arXiv:1808.08927
30 Xu X, Sun J, Endo S, Li Y, Benjamin S C and Yuan X Variational algorithms for linear algebra (Preprint 1909.03898)
31 Lubasch M, Joo J, Moinier P, Kiffner M and Jaksch D 2020 Phys. Rev. A 101 010301
32 Nu Q S C, Lamm H, Lawrence S and Yamauchi Y 2019 Phys. Rev. D 100 034518
33 Zohar E, Farace A, Reznik B and Cirac J I 2017 Phys. Rev. A 95 023604
34 Stryker J R 2019 Phys. Rev. A 99 042301
35 Halimeh J C and Hauke P 2020 Phys. Rev. Lett. 125 030503
36 Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P and Pan J W 2020 Nature 587 392
37 B\"uchler H P, Hermele M, Huber S D, Fisher M P A and Zoller P 2005 Phys. Rev. Lett. 95 040402
38 Lewenstein M S A A V D B S A and Sen U 2007 Adv. Phys. 56 243
39 Boada O C A L J I and Pico V 2010 New J. Phys. 12 113055
40 Bermudez A, Mazza L, Rizzi M, Goldman N, Lewenstein M and Martin-Delgado M A 2010 Phys. Rev. Lett. 105 190404
41 Banerjee D D M M M R E S P W U J and Zoller P 2012 Phys. Rev. Lett. 109 175302
42 Zohar E C J I and Reznik B 2012 Phys. Rev. Lett. 109 125302
43 Zohar E C J I and Reznik B 2013 Phys. Rev. Lett. 110 055302
44 Zohar E, Cirac J I and Reznik B 2013 Phys. Rev. Lett. 110 125304
45 Zohar E, Cirac J I and Reznik B 2015 Rep. Prog. Phys. 79 014401
46 Stannigel K, Hauke P, Marcos D, Hafezi M, Diehl S, Dalmonte M and Zoller P 2014 Phys. Rev. Lett. 112 120406
47 G\"org F, Sandholzer K, Minguzzi J, Desbuquois R, Messer M and Esslinger T 2019 Nat. Phys. 15 1161
48 Mil A, Zache T V, Hegde A, Xia A, Bhatt R P, Oberthaler M K, Hauke P, Berges J and Jendrzejewski F 2020 Science 367 1128
49 Blatt R and Roos C F 2012 Nat. Phys. 8 277
50 Hauke P M D D M and Zoller P 2013 Phys. Rev. 3 041018
51 Martinez E A, Muschik C A, Schindler P, Nigg D, Erhard A, Heyl M, Hauke P, Dalmonte M, Monz T, Zoller P and Blatt R 2016 Nature 534 516
52 Clark L W, Anderson B M, Feng L, Gaj A, Levin K and Chin C 2018 Phys. Rev. Lett. 121 030402
53 Davoudi Z, Hafezi M, Monroe C, Pagano G, Seif A and Shaw A 2020 Phys. Rev. Research 2 023015
54 Marcos D R P R E and Zoller P 2013 Phys. Rev. Lett. 111 110504
55 Marcos D, Widmer P, Rico E, Hafezi M, Rabl P, Wiese U J and Zoller P 2014 Ann. Phys. 351 634
56 Tagliacozzo L C A Z A and Lewenstein M 2013 Ann. Phys. 330 160
57 Tagliacozzo L, Celi A, Orland P, Mitchell M W and Lewenstein M 2013 Nat. Commun. 4 2615
58 Zhang J, Unmuth-Yockey J, Zeiher J, Bazavov A, Tsai S W and Meurice Y 2018 Phys. Rev. Lett. 121 223201
59 Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuleti\'c V and Lukin M D 2017 Nature 551 579
60 Surace F M, Mazza P P, Giudici G, Lerose A, Gambassi A and Dalmonte M 2020 Phys. Rev. X 10 021041
61 Wiese U J 2013 Ann. Phys. 525 777
62 Zhang D W, Zhu Y Q, Zhao Y X, Yan H and Zhu S L 2018 Adv. Phys. 67 253
63 Zhang D W, Wang Z D and Zhu S L 2011 Front. Phys. 7 31
64 Jordan S P, Lee K S M and Preskill J 2012 Science 336 1130
65 Notarnicola S E E F P M G P S and Pepe F V 2015 J. Phys. A: Math. Theor. 48 30FT01
66 Lamm H and Lawrence S 2018 Phys. Rev. Lett. 121 170501
67 Klco N, Dumitrescu E F, McCaskey A J, Morris T D, Pooser R C, Sanz M, Solano E, Lougovski P and Savage M J 2018 Phys. Rev. A 98 032331
68 Nu Q S C, Lamm H, Lawrence S and Yamauchi Y 2020 Phys. Rev. Research 2 013272
69 Klco N and Savage M J 2019 Phys. Rev. A 99 052335
70 Klco N, Savage M J and Stryker J R 2020 Phys. Rev. D 101 074512
71 Yeter-Aydeniz K, Dumitrescu E F, McCaskey A J, Bennink R S, Pooser R C and Siopsis G 2019 Phys. Rev. A 99 032306
72 Zohar E, Farace A, Reznik B and Cirac J I 2017 Phys. Rev. Lett. 118 070501
73 Zohar E and Cirac J I 2018 Phys. Rev. B 98 075119
74 Bauer C W, de Jong W A, Nachman B and Provasoli D arXiv:1904.03196
75 Raychowdhury I and Stryker J R 2020 Phys. Rev. D 101 114502
76 Du W, Vary J P, Zhao X and Zuo W arXiv:2006.01369
77 Roggero A, Li A C, Carlson J, Gupta R and Perdue G N 2020 Phys. Rev. D 101 074038
78 Kreshchuk M, Jia S, Kirby W M, Goldstein G, Vary J P and Love P J arXiv:2009.07885
79 de Jong W A, Metcalf M, Mulligan J, P\losko\'n M, Ringer F and Yao X arXiv:2010.03571
80 Davoudi Z, Raychowdhury I and Shaw A (Preprint 2009.11802)
81 Wei A Y, Naik P, Harrow A W and Thaler J 2020 Phys. Rev. D 101 094015
82 Klco N and Savage M J arXiv:2002.02018
83 Holland E T, Wendt K A, Kravvaris K, Wu X, Ormand W E, DuBois J L, Quaglioni S and Pederiva F 2020 Phys. Rev. A 101 062307
84 Avkhadiev A, Shanahan P and Young R 2020 Phys. Rev. Lett. 124 080501
85 Kharzeev D E and Kikuchi Y 2020 Phys. Rev. Research 2 023342
86 Shaw A F, Lougovski P, Stryker J R and Wiebe N 2020 Quantum 4 306
87 Liu J and Xin Y arXiv:2004.13234
88 Mueller N, Tarasov A and Venugopalan R 2020 Phys. Rev. D 102 016007
89 Bepari K, Malik S, Spannowsky M and Williams S arXiv:2010.00046
90 Kreshchuk M, Kirby W M, Goldstein G, Beauchemin H and Love P J arXiv:2002.04016
91 Muschik C, Heyl M, Martinez E, Monz T, Schindler P, Vogell B, Dalmonte M, Hauke P, Blatt R and Zoller P 2017 New J. Phys. 19 103020
92 Hackett D C, Howe K, Hughes C, Jay W, Neil E T and Simone J N 2019 Phys. Rev. A 99 062341
93 Alexandru A, Bedaque P F, Harmalkar S, Lamm H, Lawrence S, Warrington N C and NuQS Collaboration 2019 Phys. Rev. D 100 114501
94 Gui-Lu L 2006 Commun. Theor. Phys. 45 825
95 Childs A M, Kothari R and Somma R D 2017 Siam. J. Comput. 46 1920
96 Van Apeldoorn J, Gilyen A, Gribling S and de Wolf R 2017 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). Proceedings 403-414 INSPEC:17339111
97 Chowdhury A N and Somma R D 2017 Quantum Information & Computation 17 41
98 Gily\'en A, Su Y, Low G H and Wiebe N 2019 Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing STOC 2019 (New York: Association for Computing Machinery) p. 1933204
99 Arrazola J M, Kalajdzievski T, Weedbrook C and Lloyd S 2019 Phys. Rev. A 100 032306
100 Lau H K, Pooser R, Siopsis G and Weedbrook C 2017 Phys. Rev. Lett. 118 080501
101 Zhang D B, Xue Z Y, Zhu S L and Wang Z D 2019 Phys. Rev. A 99 012331
102 Zhang D B, Zhu S L and Wang Z D 2020 Phys. Rev. Lett. 124 010506
103 Zhang D B, Zhang G Q, Xue Z Y, Zhu S L and Wang Z D Continuous-variable assisted thermal quantum simulation (Preprint 2006.00471)
104 Kalajdzievski T, Weedbrook C and Rebentrost P 2018 Phys. Rev. A 97 062311
105 Lloyd S 2003 Quantum Information with Continuous Variables, Ed. Braunstein S L and Pati A K (Dordrecht: Springer Netherlands) pp. 37-45
106 Furusawa A and Van Loock P2011 Quantum teleportation and entanglement: a hybrid approach to optical quantum information processing (John Wiley & Sons)
107 Andersen U L, Neergaard-Nielsen J S, van Loock P and Furusawa A 2015 Nat. Phys. 11 713
108 Liu N N, Thompson J, Weedbrook C, Lloyd S, Vedral V, Gu M L and Modi K 2016 Phys. Rev. A 93 052304
109 Gan H, Maslennikov G, Tseng K W, Nguyen C and Matsukevich D 2020 Phys. Rev. Lett. 124 170502
110 Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
111 Monroe C and Kim J 2013 Science 339 1164
112 Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
113 Campagne-Ibarcq P, Eickbusch A, Touzard S, Zalys-Geller E, Frattini N E, Sivak V V, Reinhold P, Puri S, Shankar S, Schoelkopf R J, Frunzio L, Mirrahimi M and Devoret M H 2020 Nature 584 368
114 Noh K, Girvin S and Jiang L 2020 Phys. Rev. Lett. 125 080503
115 Low G H and Chuang I L 2017 Phys. Rev. Lett. 118 010501
116 Campbell E 2019 Phys. Rev. Lett. 123 070503
117 Childs A M, Su Y, Tran M C, Wiebe N and Zhu S 2019 A theory of trotter error (Preprint 1912.08854)
118 Tran M C, Chu S K, Su Y, Childs A M and Gorshkov A V 2020 Phys. Rev. Lett. 124 220502
119 Albash T and Lidar D A 2018 Rev. Mod. Phys. 90 015002
120 Shen Y, Zhang X, Zhang S, Zhang J N, Yung M H and Kim K 2017 Phys. Rev. A 95 020501
121 Hempel C, Maier C, Romero J, McClean J, Monz T, Shen H, Jurcevic P, Lanyon B P, Love P, Babbush R, Aspuru-Guzik A, Blatt R and Roos C F 2018 Phys. Rev. X 8 031022
122 Zhang D B and Yin T 2020 Phys. Rev. A 101 032311
123 McClean J R, Kimchi-Schwartz M E, Carter J and de Jong W A 2017 Phys. Rev. A 95 042308
124 Nakanishi K M, Mitarai K and Fujii K 2019 Phys. Rev. Research 1 033062
125 Higgott O, Wang D and Brierley S 2019 Quantum 3 156
126 Zhang D B, Yuan Z H and Yin T 2020 arXiv:2006.15781 [quant-ph]
127 Liu J G, Mao L, Zhang P and Wang L 2019 Solving quantum statistical mechanics with variational autoregressive networks and quantum circuits (Preprint 1912.11381)
128 Wu J and Hsieh T H 2019 Phys. Rev. Lett. 123 220502
129 Zhu D, Johri S, Linke N M, Landsman K A, Nguyen N H, Alderete C H, Matsuura A Y, Hsieh T H and Monroe C Generation of thermofield double states and critical ground states with a quantum computer (Preprint 1906.02699)
130 Chowdhury A N, Low G H and Wiebe N A variational quantum algorithm for preparing quantum gibbs states (Preprint 2002.00055)
131 Wang Y, Li G and Wang X Variational quantum gibbs state preparation with a truncated taylor series (Preprint 2005.08797)
132 McArdle S, Jones T, Endo S, Li Y, Benjamin S C and Yuan X 2019 npj Quantum Information 5 75
133 Endo S, Sun J, Li Y, Benjamin S C and Yuan X 2020 Phys. Rev. Lett. 125 010501
134 Susskind L 1977 Phys. Rev. D 16 3031
135 Dumitrescu E F, McCaskey A J, Hagen G, Jansen G R, Morris T D, Papenbrock T, Pooser R C, Dean D J and Lougovski P 2018 Phys. Rev. Lett. 120 210501
136 Ji X 2013 Phys. Rev. Lett. 110 262002
137 Kang Z B, Wang E, Wang X N and Xing H 2014 Phys. Rev. Lett. 112 102001
138 Kang Z B, Vitev I and Xing H 2014 Phys. Rev. Lett. 113 062002
139 Lin H W, Nocera E R, Olness F, et al. 2018 Progress in Particle and Nuclear Physics 100 107
140 Harmalkar S, Lamm H and Lawrence S Quantum simulation of field theories without state preparation (Preprint 2001.11490)
141 McClean J R, Rubin N C, Sung K J, et al. 2020 Quantum Science and Technology 5 034014
142 Bergholm V, Izaac J, Schuld M, Gogolin C, Alam M S, Ahmed S, Arrazola J M, Blank C, Delgado A, Jahangiri S, McKiernan K, Meyer J J, Niu Z, Sz\'ava A and Killoran N arXiv:1811.04968
[1] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[2] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[3] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[4] Review of quantum simulation based on Rydberg many-body system
Zheng-Yuan Zhang(张正源), Dong-Sheng Ding(丁冬生), and Bao-Sen Shi(史保森). Chin. Phys. B, 2021, 30(2): 020307.
[5] Low-temperature environments for quantum computation and quantum simulation
Hailong Fu(付海龙), Pengjie Wang(王鹏捷), Zhenhai Hu(胡禛海), Yifan Li(李亦璠), and Xi Lin(林熙). Chin. Phys. B, 2021, 30(2): 020702.
[6] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[7] Linear optical approach to supersymmetric dynamics
Yong-Tao Zhan(詹颙涛), Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Wei-Wei Pan(潘维韦), Munsif Jan, Fu-Ming Chang(常弗鸣), Kai Sun(孙凯), Jin-Shi Xu(许金时), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(1): 014209.
[8] Photo-transmutation based on resonance γ-ray source
Guang-Yong Fu(付光永), Yong-Le Dang(党永乐), Fu-Long Liu(刘伏龙), Di Wu(吴笛), Chuang-Ye He(贺创业), Nai-Yan Wang(王乃彦). Chin. Phys. B, 2019, 28(6): 060707.
[9] Experimental implementation of a continuous-time quantum random walk on a solid-state quantum information processor
Maimaitiyiming Tusun(麦麦提依明·吐孙), Yang Wu(伍旸), Wenquan Liu(刘文权), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(11): 110302.
[10] Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit
Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 060305.
[11] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[12] Superconducting quantum bits
Wei-Yang Liu(刘伟洋), Dong-Ning Zheng(郑东宁), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2018, 27(2): 027401.
[13] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
[14] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[15] On the usefulness of an assisted driving Hamiltonian for quantum adiabatic evolution
Jie Sun(孙杰), Songfeng Lu(路松峰). Chin. Phys. B, 2018, 27(11): 110306.
No Suggested Reading articles found!