Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 070306    DOI: 10.1088/1674-1056/abe378
GENERAL Prev   Next  

Creation and annihilation phenomena of electron and positron pairs in an oscillating field

M Jiang(江淼)1,2, D D Su(苏丹丹)3, N S Lin(林南省)1,2, and Y J Li(李英骏)1,2,†
1 School of Science, China University of Mining and Technology, Beijing 100083, China;
2 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The combination of an oscillating and a static field is used to study the creation and annihilation phenomena during the pair creation process. The time evolution, spatial density and momentum distribution of the created particles for a fermionic system are presented, which demonstrate that with the increasing static field intensity, the number of the created particles experiences a distinguishable decrease in every period of the oscillating field, which is caused by the annihilation phenomena between the created electrons and positrons.
Keywords:  pair creation      computational quantum field theory      strong laser field  
Received:  26 November 2020      Revised:  24 January 2021      Accepted manuscript online:  05 February 2021
PACS:  03.65.-w (Quantum mechanics)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  03.65.Pm (Relativistic wave equations)  
  12.20.Ds (Specific calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974419 and 11605286), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA25051000), and the National Key R&D Program of China (Grant No. 2018YFA0404802).
Corresponding Authors:  Y J Li     E-mail:

Cite this article: 

M Jiang(江淼), D D Su(苏丹丹), N S Lin(林南省), and Y J Li(李英骏) Creation and annihilation phenomena of electron and positron pairs in an oscillating field 2021 Chin. Phys. B 30 070306

[1] Schwinger J 1951 Phys. Rev. 82 664
[2] Narozhny N B, Bulanov S S, Mur V D and Popov V S 2004 JETP Lett. 80 382
[3] Di Piazza A 2004 Phys. Rev. D 70 053013
[4] Müller C, Hatsagortsyan K Z and Keitel C H 2008 Phys. Rev. A 78 033408
[5] Ruf M, Mocken G R, Müller C, Hatsagortsyan K Z and Keitel C H 2009 Phys. Rev. Lett. 102 080402
[6] Kirk J G, Bell A R and Arka I 2009 Plasma Phys. Control. Fusion 51 085008
[7] Tang S, Xie B S, Lu D, Wang H Y, Fu L B and Liu J 2013 Phys. Rev. A 88 012106
[8] Sang H B, Jiang M and Xie B S 2013 Chin. Phys. Lett. 30 111201
[9] Li Z L, Sang H B and Xie B S 2013 Chin. Phys. Lett. 30 071201
[10] Liu Y, Lv Q Z, Li Y T, Grobe R and Su Q 2015 Phys. Rev. A 91 052123
[11] Piccinelli G and Sánchez A 2017 Phys. Rev. D 96 076014
[12] Li Z L, Xie B S and Li Y J 2019 Phys. Rev. D 100 076018
[13] Krekora P, Su Q and Grobe R 2004 Phys. Rev. Lett. 92 040406
[14] Jiang M, Su W, Lu X, Sheng Z M, Li Y T, Li Y J, Zhang J, Grobe R and Su Q 2011 Phys. Rev. A 83 053402
[15] Wöllert A, Klaiber M, Bauke H and Keitel C H 2015 Phys. Rev. D 91 065022
[16] Schützhold R, Gies H and Dunne G 2008 Phys. Rev. Lett. 101 130404
[17] Monin A and Voloshin M B 2010 Phys. Rev. D 81 085014
[18] Dong S, Unger J, Bryan J, Su Q and Grobe R 2020 Phys. Rev. E 101 013310
[19] Krekora P, Cooley K, Su Q and Grobe R 2005 Phys. Rev. Lett. 95 070403
[20] Jiang M, Lv Q Z, Sheng Z M, Grobe R and Su Q 2013 Phys. Rev. A 87 042503
[21] Lv Q Z, Liu Y, Li Y J, Grobe R and Su Q 2014 Phys. Rev. A 90 013405
[22] Wang Q, Liu J and Fu L b 2016 Sci. Rep. 6 25292
[23] Wang Q, Xia Q Z, Liu J and Fu L B 2018 Chin. Phys. B 27 080302
[24] Su D D, Li Y T, Lv Q Z and Zhang J 2020 Phys. Rev. D 101 054501
[25] Jiang M, Su W, Lv Z Q, Lu X, Li Y J, Grobe R and Su Q 2012 Phys. Rev. A 85 033408
[26] Schneider C and Schützhold R 2016 J. High Energy Phys. 2016 164
[27] Aleksandrov I A, Plunien G and Shabaev V M 2018 Phys. Rev. D 97 116001
[28] Braun J W, Su Q and Grobe R 1999 Phys. Rev. A 59 604
[29] Wagner R E, Ware M R, Shields B T, Su Q and Grobe R 2011 Phys. Rev. Lett. 106 023601
[30] Bandrauk A D and Shen H 1994 J. Phys. A Math. Gen. 27 7147
[31] Mocken G R and Keitel C H 2008 Comput. Phys. Commun. 178 868
[32] Sauter F 1932 Zeitschrift für Physik 73 547
[33] Lin N S, Han L X, Jiang M and Li Y J 2018 Acta Phys. Sin. 67 133401 (in Chinese)
[1] Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency
Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收). Chin. Phys. B, 2023, 32(1): 010301.
[2] Efficient solver for time-dependent Schrödinger equation with interaction between atoms and strong laser field
Sheng-Peng Zhou(周胜鹏), Ai-Hua Liu(刘爱华), Fang Liu(刘芳), Chun-Cheng Wang(王春成), Da-Jun Ding(丁大军). Chin. Phys. B, 2019, 28(8): 083101.
[3] Effect of laser polarization on strong-field ionization and fragmentation of nitrous oxide molecules
Rui Wang(王瑞), Shi-Wen Zhang(张世文), Yang Liu(刘洋), Tian Sun(孙添), Hang Lv(吕航), Hai-Feng Xu(徐海峰). Chin. Phys. B, 2019, 28(5): 053301.
[4] Validity of extracting photoionization time delay from the first moment of streaking spectrogram
Chang-Li Wei(魏长立), Xi Zhao(赵曦). Chin. Phys. B, 2019, 28(1): 013201.
[5] Dynamical effects of switching a super-critical well potential on pair creation from a vacuum
Qiang Wang(王强), Qin-Zhi Xia(夏勤智), Jie Liu(刘杰), Li-Bin Fu(傅立斌). Chin. Phys. B, 2018, 27(8): 080302.
[6] Rydberg excitation of neutral nitric oxide molecules instrong UV and near-IR laser fields
Lv Hang (吕航), Zhang Jun-Feng (张军峰), Zuo Wan-Long (左万龙), Xu Hai-Feng (徐海峰), Jin Ming-Xing (金明星), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(6): 063303.
[7] Deflections of photoelectron classical trajectories in screened Coulomb potentials of H2+
Qin Bo-Ya (秦博雅), Wang Pei-Jie (王培杰), He Feng (何峰). Chin. Phys. B, 2015, 24(11): 114208.
[8] Method of accurately calculating mean field operator in multi-configuration time-dependent Hartree-Fock frame
Li Wen-Liang (李文亮), Zhang Ji (张季), Yao Hong-Bin (姚洪斌). Chin. Phys. B, 2013, 22(9): 093202.
No Suggested Reading articles found!