Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034501    DOI: 10.1088/1674-1056/abc3b3
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Modeling and analysis of car-following behavior considering backward-looking effect

Dongfang Ma(马东方)1, Yueyi Han(韩月一)1, Fengzhong Qu(瞿逢重)1, and Sheng Jin(金盛)2,
1 Ocean College, Institute of Marine Information Science and Technology, Zhejiang University, Hangzhou 310058, China; 2 College of Civil Engineering and Architecture, Institute of Intelligent Transportation System, Zhejiang University, Hangzhou 310058, China
Abstract  The car-following behavior can be influenced by its driver's backward-looking effect. Especially in traffic congestion, if vehicles adjust the headway by considering backward-looking effect, the stability of traffic flow can be enhanced. A model of car-following behavior considering backward-looking effect was built using visual information as a stimulus. The critical stability conditions were derived by linear and nonlinear stability analyses. The results of parameter sensitivity analysis indicate that the stability of traffic flow was enhanced by considering the backward-looking effect. The spatiotemporal evolution of traffic flow of different truck ratios and varying degrees of backward-looking effect was determined by numerical simulation. This study lays a foundation for exploring the complex feature of car-following behavior and making the intelligent network vehicles control rules more consistent with human driver habits.
Keywords:  traffic flow      car-following model      visual angle      backward-looking effect  
Received:  01 August 2020      Revised:  26 September 2020      Accepted manuscript online:  22 October 2020
PACS:  45.70.Vn (Granular models of complex systems; traffic flow)  
  89.40.-a (Transportation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1601000), the National Natural Science Foundation of China (Grant Nos. 61773337, 61773338, and 61722113), and the Key Research and Development Program of Shandong Province, China (Grant No. 2019TSLH0203).
Corresponding Authors:  Corresponding author. E-mail: jinsheng@zju.edu.cn   

Cite this article: 

Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛) Modeling and analysis of car-following behavior considering backward-looking effect 2021 Chin. Phys. B 30 034501

1 Herman R, Montroll E W, Potts R B, Rothery and R W 10.1287/opre.7.1.86 1959 Oper. Res. 7 86
2 Pipes L A 1953 J. Appl. Phys. 24 274
3 Chandler R E, Herman R and Montroll E W 1958 Operations Research 6 165
4 Gipps P G 1981 Transportation Research Part B 15 105
5 Treiber M, Hennecke A and Helbing D 2000 Phys. Rev. E 62 1805
6 Bando M, Hasebe K, Nakayama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
7 Helbing D and Tilch B 1998 Phys. Rev. E 58 133
8 Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101
9 Qin S D, Ge H X and Cheng R J 2018 Chin. Phys. B 27 050503
10 Yang D, Zhu L L, Liu Y L, Wu D H and Ran B 2019 IEEE Trans. Intellig. Transpo. Sys. 20 1991
11 Sun L, Jafaripournimchahi A, Kornhauser A and Hu W S 2020 Physica A 547 123829
12 Dong C Y, Wang H, Wang W, Li Y and Hua X D 2018 Acta Phys. Sin. 67 144501 (in Chinese)
13 Wang Q Y, Cheng R J and Ge H X 2019 Phys. Lett. A 383 1879
14 Yue F R, Chen J, Ma J, Song W G and Lo S M 10.1088/1674-1056/27/12/124501 2018 Chin. Phys. B 27 124501
15 Liu Y J, Zhang H L and He L 2012 Chin. Phys. Lett. 29 104502
16 Tang T Q, Yang X B and Wu Y H 2012 Chin. Phys. Lett. 29 098903
17 Dong C Y, Wang H and Wang W 2018 Acta Phys. Sin. 67 144501 (in Chinese)
18 Yuan N and Hua C C 2012 Acta Phys. Sin. 61 160509 (in Chinese)
19 Liang J Y, Zhang L L, Luan X D, Guo J L, Lao S Y and Xie Y X 10.7498/aps.66.194501 2017 Acta Phys. Sin. 66 194501 (in Chinese)
20 Ni X Y and Huang H 2019 Chin. Phys. B 28 098901
21 Sun D H, Zhang J C, Zhao M and Tian C 2012 [J]. Sichuan University (Natural Science Edition) 49 115 (in Chinese)
22 Ge H X, Cui Y and Cheng R J 2014 Acta Phys. Sin. 63 110504 (in Chinese)
23 Chen C, Cheng R J and Ge H X 2019 Physica A 525 278
24 Yang D, Jin P, Pu Y and Ran B 2013 Eur. Phys. J. B 86 92
25 Evans L and Rothery R1973 Highway Research Record 64 13
26 Lee D N 1976 Perception 5 437
27 Andersen G J and Sauer C W 2007 Human Factors 49 878
28 Jin S, Wang D H, Huang Z Y and Tao P F 2011 Physica A 390 1931
29 Ma D F, Han Y Y and Jin S 2020 Chin. Phys. B 29 060504
30 Jin S, Wang D H, Huang Z Y and Tao P F 2012 Phys. Lett. A 376 153
31 Li T L and Hui F Computer Engineering and Applications 53 249
[1] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[2] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[3] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[4] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[5] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[6] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[7] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[8] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[9] Heterogeneous traffic flow modeling with drivers' timid and aggressive characteristics
Cong Zhai(翟聪), Weitiao Wu(巫威眺), and Songwen Luo(罗淞文). Chin. Phys. B, 2021, 30(10): 100507.
[10] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[11] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
[12] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[13] Traffic flow velocity disturbance characteristics and control strategy at the bottleneck of expressway
Jun-Wei Zeng(曾俊伟), Yong-Sheng Qian(钱勇生), Xu-Ting Wei(魏谞婷), Xiao Feng(冯骁). Chin. Phys. B, 2018, 27(12): 124502.
[14] Nonlinear density wave and energy consumption investigation of traffic flow on a curved road
Zhizhan Jin(金智展), Rongjun Cheng(程荣军), Hongxia Ge(葛红霞). Chin. Phys. B, 2017, 26(11): 110504.
[15] Stability analysis of traffic flow with extended CACC control models
Ya-Zhou Zheng(郑亚周), Rong-Jun Cheng(程荣军), Siu-Ming Lo(卢兆明), Hong-Xia Ge(葛红霞). Chin. Phys. B, 2016, 25(6): 060506.
No Suggested Reading articles found!