Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016202    DOI: 10.1088/1674-1056/abc4dd
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties

Qi Chen(陈启)1, Xinjian Li(李欣健)1, Yao Wang(王遥)1, Lijie Chang(常立杰)1, Jian Wang(王健)1, Yuewen Zhang(张跃文)2,†, Hongan Ma(马红安)1,‡, and Xiaopeng Jia(贾晓鹏)1
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microeletronics, Zhengzhou University, Zhengzhou 450052, China
Abstract  The temperature in the high-pressure high-temperature (HPHT) synthesis is optimized to enhance the thermoelectric properties of high-density ZnO ceramic, Zn0.98Al0.02O. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy show that HPHT can be utilized to control the crystal structure and relative density of the material. High pressure can be utilized to change the energy band structure of the samples via changing the lattice constant of samples, which decreases the thermal conductivity due to the formation of a multi-scale hierarchical structure and defects. The electrical conductivity of the material reaches 6× 104 S/m at 373 K, and all doped samples behave as n-type semiconductors. The highest power factor (6.42 μ W cm - 1K -2) and dimensionless figure of merit (zT=0.09) are obtained when Zn0.98Al0.02O is produced at 973 K using HPHT, which is superior to previously reported power factors for similar materials at the same temperature. Hall measurements indicate a high carrier concentration, which is the reason for the enhanced electrical performance.
Keywords:  high pressure and high temperature      icrostructure      Al-doped ZnO      thermoelectric  
Received:  10 September 2020      Revised:  19 October 2020      Accepted manuscript online:  27 October 2020
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  72.15.Lh (Relaxation times and mean free paths)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51171070) and the Project of Jilin Science and Technology Development Plan, China (Grant No. 20170101045JC).
Corresponding Authors:  Corresponding author. E-mail: zhangyw@zzu.edu.cn Corresponding author. E-mail: maha@jlu.edu.cn   

Cite this article: 

Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏) Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties 2021 Chin. Phys. B 30 016202

1 Minnich A J, Dresselhaus M S, Ren Z F and Chen G 2009 Energy & Environ. Sci. 2 466
2 Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G and Ren Z 2008 Science 320 634
3 Pei Y, LaLonde A D, Heinz N A, Shi X, Iwanaga S, Wang H, Chen L and Snyder G J 2011 Adv. Mater. 23 5674
4 Madavali B, Kim H S, Lee K H, Isoda Y, Gascoin F and Hong S J 2016 Mater. & Design 112 485
5 Feng S K, Li S M and Fu H Z 2014 Chin. Phys. B 23 117202
6 Cheng P, Song J, Li S, Li J and Wang C 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), 19-22 July 2015, Sydney, NSW, Australia, pp. 212-215
7 Wei J, Yang L, Ma Z, Song P, Zhang M, Ma J, Yang F and Wang X 2020 J. Mater. Sci. 55 12642
8 Liu H Q, Zhao X B, Liu F, Song Y, Sun Q, Zhu T J and Wang F P 2008 J. Mater. Sci. 43 6933
9 Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
10 Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
11 Jood P, Mehta R J, Zhang Y, Peleckis G, Wang X, Siegel R W, Borca-Tasciuc T, Dou S X and Ramanath G 2011 Nano Lett. 11 4337
12 Gautam D, Engenhorst M, Schilling C, Schierning G, Schmechel R and Winterer M 2015 J. Mater. Chem. A 3 189
13 Tsubota T, Ohtaki M, Eguchi K and Arai H 1997 J. Mater. Chem. 7 85
14 Hoemke J, Khan A U, Yoshida H, Mori T, Tochigi E, Shibata N, Ikuhara Y and Sakka Y 2016 J. Ceram. Soc. Jpn. 124 515
15 Kinemuchi Y, Nakano H, Mikami M, Kobayashi K, Watari K and Hotta Y 2010 J. Appl. Phys. 108 053721
16 Zhu P W, Jia X, Chen H Y, Guo W L, Chen L X, Li D M, Ma H A, Ren G Z and Zou G T 2002 Solid State Commun. 123 43
17 Ohtaki M and Araki K 2011 J. Ceram. Soc. Jpn. 119 813
18 Ohtaki M, Araki K and Yamamoto K 2009 J. Electron. Mater. 38 1234
19 Tanaka Y, Ifuku T, Tsuchida K and Kato A 1997 J. Mater. Sci. Lett. 16 155
20 Guilmeau E, Maignan A and Martin C 2009 J. Electron. Mater. 38 1104
21 Colder H, Guilmeau E, Harnois C, Marinel S, Retoux R and Savary E 2011 J. Eur. Ceram. Soc. 31 2957
22 Cai K F, Müller E, Dra\vsar C and Mrotzek A 2003 Mater. Sci. Engin. B 104 45
23 Liu H, Ma H, Zhang Y, Sun B, Liu B, Kong L, Liu B and Jia X 2017 Inorg. Chem. 56 11275
24 Bai Y, Zhao J, Lv Z and Lu K 2020 J. Mater. Sci. 55 14112
25 Ong K P, Singh D J and Wu P 2011 Phys. Rev. B 83 115110
26 Liu H, Ma H, Wang C, Wang F, Liu B, Chen J, Ji G, Zhang Y and Jia X 2018 Ceram. Int. 44 19859
27 Walia S, Balendhran S, Nili H, Zhuiykov S, Rosengarten G, Wang Q H, Bhaskaran M, Sriram S, Strano M S and Kalantar-Zadeh K 2013 Prog. Mater. Sci. 58 1443
28 Bérardan David, Byl Céline, Dragoe Nita 2010 J. Am. Ceram. Soc. 93 2352
29 Rosten R, Koski M and Koppana E 2006 J. Undergrad. Mater. Res. 2 38
30 Hng H H and Tse K Y 2003 J. Mater. Sci. 38 2367
31 Fan J and Freer R 1997 J. Mater. Sci. 32 415
32 Li P, Deng S H, Zhang L, Yu J Y and Liu G H 2010 Chin. Phys. B 19 117102
33 Zhu H, Su T, Li H, Pu C, Zhou D, Zhu P and Wang X 2017 J. Eur. Ceram. Soc. 37 1541
34 Sun B, Jia X, Zhao J, Li Y, Liu H and Ma H 2018 Inorg. Chem. 57 3323
35 Zhang Y, Jia X, Sun H, Sun B, Liu B, Liu H, Kong L and Ma H 2016 J. Materiomics 2 316
36 Luo Y, Jiang Q, Yang J, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y, He X and Li X 2017 Nano Energy 32 80
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[6] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[7] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[8] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[9] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[12] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[13] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[14] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[15] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
No Suggested Reading articles found!