Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016202    DOI: 10.1088/1674-1056/abc4dd
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties

Qi Chen(陈启)1, Xinjian Li(李欣健)1, Yao Wang(王遥)1, Lijie Chang(常立杰)1, Jian Wang(王健)1, Yuewen Zhang(张跃文)2,†, Hongan Ma(马红安)1,‡, and Xiaopeng Jia(贾晓鹏)1
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microeletronics, Zhengzhou University, Zhengzhou 450052, China
Abstract  The temperature in the high-pressure high-temperature (HPHT) synthesis is optimized to enhance the thermoelectric properties of high-density ZnO ceramic, Zn0.98Al0.02O. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy show that HPHT can be utilized to control the crystal structure and relative density of the material. High pressure can be utilized to change the energy band structure of the samples via changing the lattice constant of samples, which decreases the thermal conductivity due to the formation of a multi-scale hierarchical structure and defects. The electrical conductivity of the material reaches 6× 104 S/m at 373 K, and all doped samples behave as n-type semiconductors. The highest power factor (6.42 μ W cm - 1K -2) and dimensionless figure of merit (zT=0.09) are obtained when Zn0.98Al0.02O is produced at 973 K using HPHT, which is superior to previously reported power factors for similar materials at the same temperature. Hall measurements indicate a high carrier concentration, which is the reason for the enhanced electrical performance.
Keywords:  high pressure and high temperature      icrostructure      Al-doped ZnO      thermoelectric  
Received:  10 September 2020      Revised:  19 October 2020      Accepted manuscript online:  27 October 2020
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  72.15.Lh (Relaxation times and mean free paths)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51171070) and the Project of Jilin Science and Technology Development Plan, China (Grant No. 20170101045JC).
Corresponding Authors:  Corresponding author. E-mail: zhangyw@zzu.edu.cn Corresponding author. E-mail: maha@jlu.edu.cn   

Cite this article: 

Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏) Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties 2021 Chin. Phys. B 30 016202

1 Minnich A J, Dresselhaus M S, Ren Z F and Chen G 2009 Energy & Environ. Sci. 2 466
2 Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G and Ren Z 2008 Science 320 634
3 Pei Y, LaLonde A D, Heinz N A, Shi X, Iwanaga S, Wang H, Chen L and Snyder G J 2011 Adv. Mater. 23 5674
4 Madavali B, Kim H S, Lee K H, Isoda Y, Gascoin F and Hong S J 2016 Mater. & Design 112 485
5 Feng S K, Li S M and Fu H Z 2014 Chin. Phys. B 23 117202
6 Cheng P, Song J, Li S, Li J and Wang C 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), 19-22 July 2015, Sydney, NSW, Australia, pp. 212-215
7 Wei J, Yang L, Ma Z, Song P, Zhang M, Ma J, Yang F and Wang X 2020 J. Mater. Sci. 55 12642
8 Liu H Q, Zhao X B, Liu F, Song Y, Sun Q, Zhu T J and Wang F P 2008 J. Mater. Sci. 43 6933
9 Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
10 Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
11 Jood P, Mehta R J, Zhang Y, Peleckis G, Wang X, Siegel R W, Borca-Tasciuc T, Dou S X and Ramanath G 2011 Nano Lett. 11 4337
12 Gautam D, Engenhorst M, Schilling C, Schierning G, Schmechel R and Winterer M 2015 J. Mater. Chem. A 3 189
13 Tsubota T, Ohtaki M, Eguchi K and Arai H 1997 J. Mater. Chem. 7 85
14 Hoemke J, Khan A U, Yoshida H, Mori T, Tochigi E, Shibata N, Ikuhara Y and Sakka Y 2016 J. Ceram. Soc. Jpn. 124 515
15 Kinemuchi Y, Nakano H, Mikami M, Kobayashi K, Watari K and Hotta Y 2010 J. Appl. Phys. 108 053721
16 Zhu P W, Jia X, Chen H Y, Guo W L, Chen L X, Li D M, Ma H A, Ren G Z and Zou G T 2002 Solid State Commun. 123 43
17 Ohtaki M and Araki K 2011 J. Ceram. Soc. Jpn. 119 813
18 Ohtaki M, Araki K and Yamamoto K 2009 J. Electron. Mater. 38 1234
19 Tanaka Y, Ifuku T, Tsuchida K and Kato A 1997 J. Mater. Sci. Lett. 16 155
20 Guilmeau E, Maignan A and Martin C 2009 J. Electron. Mater. 38 1104
21 Colder H, Guilmeau E, Harnois C, Marinel S, Retoux R and Savary E 2011 J. Eur. Ceram. Soc. 31 2957
22 Cai K F, Müller E, Dra\vsar C and Mrotzek A 2003 Mater. Sci. Engin. B 104 45
23 Liu H, Ma H, Zhang Y, Sun B, Liu B, Kong L, Liu B and Jia X 2017 Inorg. Chem. 56 11275
24 Bai Y, Zhao J, Lv Z and Lu K 2020 J. Mater. Sci. 55 14112
25 Ong K P, Singh D J and Wu P 2011 Phys. Rev. B 83 115110
26 Liu H, Ma H, Wang C, Wang F, Liu B, Chen J, Ji G, Zhang Y and Jia X 2018 Ceram. Int. 44 19859
27 Walia S, Balendhran S, Nili H, Zhuiykov S, Rosengarten G, Wang Q H, Bhaskaran M, Sriram S, Strano M S and Kalantar-Zadeh K 2013 Prog. Mater. Sci. 58 1443
28 Bérardan David, Byl Céline, Dragoe Nita 2010 J. Am. Ceram. Soc. 93 2352
29 Rosten R, Koski M and Koppana E 2006 J. Undergrad. Mater. Res. 2 38
30 Hng H H and Tse K Y 2003 J. Mater. Sci. 38 2367
31 Fan J and Freer R 1997 J. Mater. Sci. 32 415
32 Li P, Deng S H, Zhang L, Yu J Y and Liu G H 2010 Chin. Phys. B 19 117102
33 Zhu H, Su T, Li H, Pu C, Zhou D, Zhu P and Wang X 2017 J. Eur. Ceram. Soc. 37 1541
34 Sun B, Jia X, Zhao J, Li Y, Liu H and Ma H 2018 Inorg. Chem. 57 3323
35 Zhang Y, Jia X, Sun H, Sun B, Liu B, Liu H, Kong L and Ma H 2016 J. Materiomics 2 316
36 Luo Y, Jiang Q, Yang J, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y, He X and Li X 2017 Nano Energy 32 80
[1] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[2] Anisotropic thermoelectric transport properties in polycrystalline SnSe2
Caiyun Li(李彩云), Wenke He(何文科), Dongyang Wang(王东洋), and Li-Dong Zhao(赵立东). Chin. Phys. B, 2021, 30(6): 067101.
[3] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[4] Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃
Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056107.
[5] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[6] Leakage of an eagle flight feather and its influence on the aerodynamics
Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯). Chin. Phys. B, 2021, 30(3): 034701.
[7] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[8] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[9] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[10] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[11] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[12] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[13] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[14] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[15] Influence of spherical inclusions on effective thermoelectric properties of thermoelectric composite materials
Wen-Kai Yan(闫文凯), Ai-Bing Zhang(张爱兵), Li-Jun Yi(易利军), Bao-Lin Wang(王保林), Ji Wang(王骥). Chin. Phys. B, 2020, 29(5): 057301.
No Suggested Reading articles found!