Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 096101    DOI: 10.1088/1674-1056/abad26

Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study

Chuanxi Zhu(朱传喜), Tao Yu(于涛)
Central Iron and Steel Research Institute, Beijing 100081, China
Abstract  The strengthening effects of alloying elements Re, Ta, and W in the [110] (001) dislocation core of the γ/γ' interface are studied by first-principles calculations. From the level of energy the substitution formation energies and the migration energies of alloying elements are computed and from the level of electron the differential charge density (DCD) and the partial density of states (PDOSs) are computed. Alloying elements above are found to tend to substitute for Al sites γ' phase by analyzing the substitution formation energy. The calculation results for the migration energies of alloying elements indicate that the stability of the [110] (001) dislocation core is enhanced by adding Ta, W, and Re and the strengthening effect of Re is the strongest. Our results agree with the relevant experiments. The electronic structure analysis indicates that the electronic interaction between Re-nearest neighbor (NN) Ni is the strongest. The reason why the doped atoms have different strengthening effects in the [110] (001) dislocation core is explained at the level of electron.
Keywords:  Ni-based superalloys      dislocation structure      electronic structure      first-principles calculations  
Received:  21 June 2020      Revised:  03 August 2020      Published:  05 September 2020
PACS:  61.82.Bg (Metals and alloys)  
  31.15.A- (Ab initio calculations)  
  61.72.Lk (Linear defects: dislocations, disclinations) (Electronic structure and bonding characteristics)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0701503).
Corresponding Authors:  Tao Yu     E-mail:

Cite this article: 

Chuanxi Zhu(朱传喜), Tao Yu(于涛) Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study 2020 Chin. Phys. B 29 096101

[1] Reed R C 2006 The Superalloys: Fundamentals and Applications (Cambridge University Press) p. 102
[2] Durand-Charre M 1997 The Microstructure of Superalloys (CRC Press)
[3] Pollock T M and Argon A S 1992 Acta Metal. Mater. 40 1
[4] Jacome L A, Nörtershäuser P, Somsen C, Dlouhý A and Eggeler G 2014 Acta Mater. 69 246
[5] Link T, Epishin A, Bruckner U and Portella P 2000 Acta Mater. 48 1981
[6] Yue Q Z, Liu L, Yang W C, Huang T W, Zhang J and Fu H Z 2019 Mater. Sci. Eng. A 742 132
[7] Zhang J X, Wang J C, Harada H and Koizumi Y 2005 Acta Mater. 53 4623
[8] Ding Q Q, Li S Z, Chen L Q, Han X D, Zhang Z, Yu Q and Li J X 2018 Acta Mater. 154 137
[9] Hantcherli M, Pettinari-Sturmel F, Viguier B, Douin J and Coujou A 2012 Scr. Mater. 66 143
[10] Luo Z P, Wu Z T and Miller D J 2003 Mater. Sci. Eng. A 354 358
[11] Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B and Hu Z Q 2000 Mater. Sci. Eng. A 279 160
[12] Erickson G L 1995 JOM. 47 36
[13] Reed R C 2006 The Superalloys: Fundamentals and Applications (Cambridge University Press) pp. 157-158
[14] Bagot P A J, Silk O B W, Douglas J O, Pedrazzini S, Crudden D J, Martin T L, Hardy M C, Moody M P and Reed R C 2017 Acta Mater. 125 156
[15] Tu Y Y, Mao Z G and Seidman D N 2012 Appl. Phys. Lett. 101 121910
[16] Amouyal Y, Mao Z G and Seidman D N 2010 Acta Mater. 58 5898
[17] Wu X X, Makineni S K, Liebscher C H, Dehm G, Rezaei Mianroodi J, Shanthraj P, Svendsen B, Burger D, Eggeler G, Raabe D and Gault B 2020 Nat. Commun. 11 389
[18] Reed R C 2006 The Superalloys: Fundamentals and Applications (Cambridge University Press) p. 46
[19] Zhu T, Wang C Y and Gan Y 2010 Acta Mater. 58 2045
[20] Zhu C X, Yu T, Wang C Y and Wang D W 2020 Comput. Mater. Sci. 175 109586
[21] Wang C and Wang C Y 2009 Chin. Phys. B 18 3928
[22] Geng C Y, Wang C Y and Yu T 2005 Physica B 358 314
[23] Liu F H and Wang C Y 2017 RSC Adv. 7 19124
[24] Janotti A, Krčmar M, Fu C L and Reed R C 2004 Phys. Rev. Lett. 92 085901
[25] Zhang X M, Deng H Q, Xiao S F, Zhang Z, Tang J F, Deng L and Hu W Y 2014 J. Alloys Compd. 588 163
[26] Yu X X and Wang C Y 2012 Mater. Sci. Eng. A 539 38
[27] Wen M R and Wang C Y 2017 Chin. Phys. B 26 093106
[28] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[29] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[30] Du J P, Wang C Y and Yu T 2013 Modell. Simul. Mater. Sci. Eng. 21 015007
[31] Buffiere J Y and Ignat M 1995 Acta Metall. Mater. 43 1791
[32] Blöchl P E 1994 Phys. Rev. B 50 17953
[33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[36] Liu S H, Liu C P, Liu W Q, Zhang X N, Yan P and Wang C Y 2016 Philos. Mag. 96 2204
[37] Kohan A F, Ceder G, Morgan D and Van de Walle C G 2000 Phys. Rev. B 61 15019
[38] Liu S H, Wen M R, Li Z, Liu W Q, Yan P and Wang C Y 2017 Mater. Des. 130 157
[39] Liu S H, Li Z and Wang C Y 2017 Chin. Phys. B 26 093102
[40] Wen M R and Wang C Y 2016 RSC Adv. 6 77489
[41] Wang D W, Wang C Y, Yu T and Liu W Q 2020 Chin. Phys. B 29 043103
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[3] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[4] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[5] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[6] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[7] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[8] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[9] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[10] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[11] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[12] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[13] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[14] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[15] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
No Suggested Reading articles found!