Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108102    DOI: 10.1088/1674-1056/abad1c

Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene

Tong Liu(刘童)1, Xi-Gui Yang(杨西贵)1,†(), Zhen Li(李振)1, Yan-Wei Hu(胡宴伟)1, Chao-Fan Lv(吕超凡)1, Wen-Bo Zhao(赵文博)1, Jin-Hao Zang(臧金浩)1,‡(), Chong-Xin Shan(单崇新)1,§
1 Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China

Nanodiamonds have outstanding mechanical properties, chemical inertness, and biocompatibility, which give them potential in various applications. Current methods for preparing nanodiamonds often lead to products with impurities and uneven morphologies. We report a two-step high-pressure high-temperature (HPHT) method to synthesize nanodiamonds using naphthalene as the precursor without metal catalysts. The grain size of the diamonds decreases with increasing carbonization time (at constant pressure and temperature of 11.5 GPa and 700 °C, respectively). This is discussed in terms of the different crystallinities of the carbon intermediates. The probability of secondary anvil cracking during the HPHT process is also reduced. These results indicate that the two-step method is efficient for synthesizing nanodiamonds, and that it is applicable to other organic precursors.

Keywords:  nanodiamonds      high pressure high temperature      phase transition      naphthalene  
Received:  25 July 2020      Revised:  03 August 2020      Published:  05 October 2020
PACS: (Diamond)  
  62.50.-p (High-pressure effects in solids and liquids)  
  64.70.Nd (Structural transitions in nanoscale materials)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail: §Corresponding author. E-mail:   
About author: 
†Corresponding author. E-mail:
‡Corresponding author. E-mail:
§Corresponding author. E-mail:
* Project supported by the National Key R&D Program of China (Grant No. 2018YFB0406500), the National Natural Science Foundation of China (Grant Nos. U1804155, U1604263, and 11804307), and the China Postdoctoral Science Foundation (Grant Nos. 2018M630830 and 2019T120631).

Cite this article: 

Tong Liu(刘童), Xi-Gui Yang(杨西贵), Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩), Chong-Xin Shan(单崇新) Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene 2020 Chin. Phys. B 29 108102

Scheme 1.  

Schematic of the synthesis of nanodiamonds via the two-step HPHT method. 1. cylindrical sample of the precursor naphthalene; 2. graphite container; 3. ZrO2 sleeve; 4. octahedron pressure medium of MgO.

Fig. 1.  

(a) XRD patterns and (b) Raman spectra of the naphthalene precursor and samples NX (X = 1–4) prepared using different carbonization time at 11.5 GPa and 1700 °C.

Step 1: Carbonization at 11.5 GPa and 700 °C Step 2: Diamondation at 11.5 GPa and 1700 °C
Timea/min Morphology Timeb/s Average size/nm
N1 35 / 300 457
N2 90 / 300 204
N3 135 / 300 62
N4 180 / 300 127
N5 35 amorphous / /
N6 90 chipped / /
N7 135 layered / /
N8 180 block / /
Table 1.  

The experimental conditions and results for samples NX (X = 1–8).

Fig. 2.  

(a)–(d) Grain size distributions of samples NX (X = 1–4) prepared using different carbonization time. The red curves show fitting of the lognormal distribution function. Inset shows the corresponding SEM images.

Fig. 3.  

Average grain size of samples NX (X = 1–4) as a function of carbonization time.

Fig. 4.  

(a) TEM image of sample N3. Inset shows HRTEM image of a single diamond particle from the white rectangle area marked in (a). (b) Selected area electron diffraction pattern of sample N3.

Fig. 5.  

(a) XRD patterns, (b) Raman spectra, and (c)–(f) SEM images of samples NX (X = 5–8) obtained using different carbonization time at 11.5 GPa and 700 °C.

Fig. 6.  

Raman spectra of diamond obtained employing (a) anthracene and (b) acridine as precursors in the two-step HPHT method.

Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250 DOI: 10.1038/nature13381
Wen B, Xu B, Wang Y B, Gao G Y, Zhou X F, Zhao Z S, Tian Y J 2019 npj. Comput. Mater. 5 117 DOI: 10.1038/s41524-019-0256-2
Hu W T, Wen B, Huang Q, Xiao J W, Yu D L, Wang Y B, Zhao Z S, He J L, Liu Z Y, Xu B, Tian Y J 2017 Sci. Chin. Mater. 60 178 DOI: 10.1007/s40843-016-5161-2
Su L X, Lou Q, Zang J H, Shan C X, Gao Y F 2017 Appl. Phys. Express 10 025102 DOI: 10.7567/APEX.10.025102
Mochalin V N, Shenderova O, Ho D, Gogotsi Y 2012 Nat. Nanotechnol. 7 11 DOI: 10.1038/nnano.2011.209
Chu H Y, Hsu W C, Lin J F 2010 Wear 268 960 DOI: 10.1016/j.wear.2009.12.023
Lin W M, Kato T, Ohmori H, Osawa E 2009 Key. Eng. Mater. 404 131 DOI: 10.4028/
Kurtsiefer C, Mayer S, Zarda P, Weinfurter H 2000 Phys. Rev. Lett. 85 290 DOI: 10.1103/PhysRevLett.85.290
Zhang H C, Chen C K, Mei Y S, Li X, Jiang M Y, Hu X J 2019 Chin. Phys. B 28 076103 DOI: 10.1088/1674-1056/28/7/076103
Yang C, Wang X P, Wang L J, Pan X F, Li S K, Jing L W 2013 Chin. Phys. B 22 088101 DOI: 10.1088/1674-1056/22/8/088101
Zhang D X, Zhao Q, Zang J H, Lu Y J, Dong L, Shan C X 2018 Carbon 127 170 DOI: 10.1016/j.carbon.2017.11.009
Huang H J, Pierstorff E, Osawa E, Ho D 2007 Nano Lett. 7 3305 DOI: 10.1021/nl071521o
Zhang X Q, Chen M, Lam R, Xu X Y, Osawa E, Ho D 2009 ACS Nano 3 2609 DOI: 10.1021/nn900865g
Qin S R, Zhao Q, Cheng Z G, Su L X, Shan C X 2018 Acta Phys. Sin. 67 166801 in Chinese DOI: 10.7498/aps.67.20180862
Moore L, Chow E K H, Osawa E, Bishop J M, Ho D 2013 Adv. Mater. 25 3532 DOI: 10.1002/adma.201300343
Chang Y R, Lee H Y, Chen K, Chang C C, Tsai D S, Fu C C, Lim T S, Tzeng Y K, Fang C Y, Han C C, Chang H C, Fann W 2008 Nat. Nanotechnol. 3 284 DOI: 10.1038/nnano.2008.99
Zhang X Q, Lam R, Xu X Y, Chow E K, Kim H J, Ho D 2011 Adv. Mater. 23 4770 DOI: 10.1002/adma.201102263
Zhang K K, Zhao Q, Qin S R, Fu Y, Liu R Z, Zhi J F, Shan C X 2019 J. Colloid Interf. Sci. 537 316 DOI: 10.1016/j.jcis.2018.11.028
Su L X, Lou Q, Jiao Z, Shan C X 2016 Nanoscale Res. Lett. 11 425 DOI: 10.1186/s11671-016-1641-0
Khan M B, Khan Z H 2018 Nanodiamonds: synthesis and applications Singapore Springer Nature 1
Dong J J, Yao Z, Yao M G, Li R, Hu K, Zhu L Y, Wang Y, Sun H H, Sundqvist B, Yang K, Liu B B 2020 Phys. Rev. Lett. 124 065701 DOI: 10.1103/PhysRevLett.124.065701
Osawa E 2005 Disintegration and purification of crude aggregates of detonation nanodiamond: A few remarks on nano methodology Netherlands Springer 231
Pichot V, Comet M, Fousson E, Baras C, Senger A, Normand F L, Spitzer D 2008 Diam. Relat. Mater. 17 13 DOI: 10.1016/j.diamond.2007.09.011
Han F, Li S S, Jia X F, Chen W Q, Su T C, Hu M H, Yu K P, Wang J K, Wu Y M, Ma H A, Jia X P 2019 Chin. Phys. B 28 028103 DOI: 10.1088/1674-1056/28/2/028103
Fan X H, Xu B, Niu Z, Zhai T G, Tian B 2012 Chin. Phys. Lett. 29 048102 DOI: 10.1088/0256-307X/29/4/048102
Ekimov E A, Kudryavtsev O S, Mordvinova N E, Lebedev O I, Vlasov I I 2018 ChemNanoMat. 4 269 DOI: 10.1002/cnma.201700349
Konyashin I, Frost D J, Crossley A, Jurkschat K, Johnston C, Armstrong K 2016 Mater. Lett. 183 14 DOI: 10.1016/j.matlet.2016.07.065
Davydov V A, Agafonov V, Khabashesku V N 2016 J. Phys. Chem. C 120 29498 DOI: 10.1021/acs.jpcc.6b10805
Li Z, Zang J H, Lou Q, Yang X G, Dong B S, Liu T, Wang S L 2019 Chin. J. Lumin. 40 153 DOI: 10.3788/fgxb20194002.0153
Smith E M, Wang W Y 2016 Diam. Relat. Mater. 68 10 DOI: 10.1016/j.diamond.2016.05.010
Sokol G, Tomilenko A A, Bul’bak T A, Sokol L A, Persikov E S, Bukhtiyarov P G, Palyanov Y N 2018 High Press. Res. 38 468 DOI: 10.1080/08957959.2018.1517342
Walker D, Carpenter M A, Hitch C M 1990 Am. Miner. 75 1020
Leinenweber K D, Tyburczy J A, Sharp T G, Soignard E, Diedrich T, Petuskey W B, Wang Y, Mosenfelder J L 2012 Am. Miner. 97 353 DOI: 10.2138/am.2012.3844
Angadi V J, Anupama A V, Kumar R, Choudhary H K, Matteppanavar S, Somashekarappa H M, Rudraswamy B, Sahoo B 2017 Mater. Chem. Phys. 199 313 DOI: 10.1016/j.matchemphys.2017.07.021
Liang Y C, Liu K K, Lu Y J, Zhao Q, Shan C X 2018 Chin. Phys. B 27 078102 DOI: 10.1088/1674-1056/27/7/078102
Shinohara H, Yamakita Y, Ohno K 1998 J. Mol. Struct. 442 221 DOI: 10.1016/S0022-2860(97)00335-9
Tan D Z, Zhou S F, Xu B B, Chen P, Shimotsuma Y, Miura K, Qiu J R 2013 Carbon 62 374 DOI: 10.1016/j.carbon.2013.06.019
Franklin R E 1950 Acta. Cryst. 3 107 DOI: 10.1107/S0365110X50000264
Kinoshita K 1988 Carbon-electrochemical and physicochemical properties New York John Wiley & Sons
Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095 DOI: 10.1103/PhysRevB.61.14095
Yang X G, Yao M G, Wu X Y, Liu S J, Chen S L, Yang K, Liu R, Cui T, Sundqvist B, Liu B B 2017 Phys. Rev. Lett. 118 245701 DOI: 10.1103/PhysRevLett.118.245701
Chanyshev A D, Litasov K D, Furukawa Y, Kokh K A, Shatskiy A F 2017 Sci. Rep. 7 7889 DOI: 10.1038/s41598-017-08529-2
Spanu L, Donadio D, Hohl D, Schwegler E, Galli G 2011 Proc. Natl. Acad. Sci. 108 6843 DOI: 10.1073/pnas.1014804108
Fang S, Ma H A, Guo L S, Chen L C, Wang Y, Ding L Y, Cai Z H, Wang J, Jia X P 2019 Chin. Phys. B 28 098101 DOI: 10.1088/1674-1056/ab3445
Yang X G, Lv C F, Yao Z, Yao M G, Qin J X, Li X, Shi L, Du M R, Liu B B, Shan C X 2020 Carbon 159 266 DOI: 10.1016/j.carbon.2019.12.057
Higashi K, Onodera A 1986 Physica B+C 139 813 DOI: 10.1016/0378-4363(86)90708-4
Onodera A, Higashi K, Irie Y 1988 J. Mater. Sci. 23 422 DOI: 10.1007/BF01174666
Onodera A, Irie Y, Higashi K 1991 J. Appl. Phys. 69 2611 DOI: 10.1063/1.348652
Kamali A R, Fray D J 2015 Chem. Commun. 51 5594 DOI: 10.1039/C5CC00233H
Liu W Q, Ma H A, Li X L, Liang Z Z, Liu M L, Li R, Jia X P 2007 Chin. Phys. Lett. 24 1749 DOI: 10.1088/0256-307X/24/6/087
Guillou C L, Brunet F, Irifune T, Ohfuji H, Rouzaud J N 2007 Carbon 45 636 DOI: 10.1016/j.carbon.2006.10.005
Khaliullin R Z, Eshet H, Kuhne T D, Behler J, Parrinello M 2011 Nat. Mater. 10 693 DOI: 10.1038/nmat3078
Li Y D, Chen Y S, Su M J, Ran Q F, Wang C X, Ma H A, Fang C, Chen L C 2020 Chin. Phys. B 29 078101 DOI: 10.1088/1674-1056/ab90e8
[1] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[2] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[3] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[4] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[5] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[6] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[7] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[8] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[9] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[10] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[11] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[12] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[13] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[14] Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport
Yan Li(李妍), Yi-Nuo Liu(刘一诺), Xia Zhang(张霞). Chin. Phys. B, 2020, 29(10): 106301.
[15] Distribution of a polymer chain between two interconnected spherical cavities
Chao Wang(王超), Ying-Cai Chen(陈英才), Shuang Zhang(张爽), Hang-Kai Qi(齐航凯), Meng-Bo Luo(罗孟波). Chin. Phys. B, 2020, 29(10): 108201.
[1] Jia Yu, Ma Bing-xian, Shen San-guo, Yang Shi-e. CALCULATION OF ELECTRONIC STATES OF Si(337) SURFACE[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(1): 46 -51 .
[2] Ding Xiu-xiang, Liang Jiu-qing. LARMOR PRECESSION AND THE BARRIER INTERACTION TIME[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(6): 409 -415 .
[3] Liu Xiao-Juan, Zhou Bing-Ju, Liu Ming-Wei, Li Shou-Cun. Preparation and control of entangled states in the two-mode coherent fields interacting with a moving atom via two-photon process[J]. Chin. Phys., 2007, 16(12): 3685 -3691 .
[4] Gong Zhi-Qiang, Liu Jian-Qiang. Role of localised surface plasmon polaritons coupling in optical transmission through double-layer metal apertures[J]. Chin. Phys. B, 2010, 19(6): 67303 -067303 .
[5] Zhao Tong, Zou Xiao-Bing, Zhang Ran, Wang Xin-Xin. X-ray backlighting of two-wire Z-pinch plasma using X-pinch[J]. Chin. Phys. B, 2010, 19(7): 75205 -075205 .
[6] Zhou Guo-Quan. Kurtosis parameters of super Lorentz–Gauss beams through a paraxial and real ABCD optical system[J]. Chin. Phys. B, 2011, 20(11): 114103 .
[7] Fu Zhen-Guo, Wang Zhi-Gang, Li Shu-Shen, Zhang Ping. Magnetic quantum oscillations in a monolayer graphene under a perpendicular magnetic field[J]. Chin. Phys. B, 2011, 20(5): 58103 -058103 .
[8] Yan Jun-Feng, You Tian-Gui, Zhang Zhi-Yong, Tian Jiang-Xiao, Yun Jiang-Ni, Zhao Wu. Effect of Sb-doping on the morphology and the dielectric properties of chrysanthemum-like ZnO nanowire clusters[J]. Chin. Phys. B, 2012, 21(9): 98001 -098001 .
[9] Xu Zhi-Xiang, Qu Wei-Zhi, Gao Ran, Hu Xin-Hua, Xiao Yan-Hong. Linewidth of electromagnetically induced transparency under motional averaging in coated vapor cell[J]. Chin. Phys. B, 2013, 22(3): 33202 -033202 .
[10] Liu Yong-Chun, Hu Yu-Wen, Wong Chee Wei, Xiao Yun-Feng . Review of cavity optomechanical cooling[J]. Chin. Phys. B, 2013, 22(11): 114213 .