Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108101    DOI: 10.1088/1674-1056/aba5fe
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Mechanical and microstructural response of densified silica glass under uniaxial compression: Atomistic simulations

Yi-Fan Xie(谢轶凡)1,2, Feng Feng(冯锋)1, Ying-Jun Li(李英骏)2,†, Zhi-Qiang Hu(胡志强)3, Jian-Li Shao(邵建立)3,‡, and Yong Mei(梅勇)3,4,§
1 School of Science, China University of Mining and Technology, Beijing 100083, China
2 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China
3 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
4 Institute of Defense Engineering, AMS, PLA, Beijing 100036, China
Abstract  

We investigate the mechanical and microstructural changes of the densified silica glass under uniaxial loading-unloading via atomistic simulations with a modified BKS potential. The stress–strain relationship is found to include three respective stages: elastic, plastic and hardening regions. The bulk modulus increases with the initial densification and will undergo a rapid increase after complete densification. The yield pressure varies from 5 to 12 GPa for different densified samples. In addition, the Si–O–Si bond angle reduces during elastic deformation under compression, and 5-fold Si will increase linearly in the plastic deformation. In the hardening region, the peak splitting and the new peak are both found on the Si–Si and O–O pair radial distribution functions, where the 6-fold Si is increased. Instead, the lateral displacement of the atoms always varies linearly with strain, without evident periodic characteristic. As is expected, the samples are permanently densified after release from the plastic region, and the maximum density of recovered samples is about 2.64 g/cm3, which contains 15 % 5-fold Si, and the Si–O–Si bond angle is less than the ordinary silica glass. All these findings are of great significance for understanding the deformation process of densified silica glass.

Keywords:  silica glass      uniaxial compression      densification      atomistic simulation  
Received:  10 April 2020      Revised:  15 June 2020      Accepted manuscript online:  15 July 2020
PACS:  81.05.Kf (Glasses (including metallic glasses))  
  81.70.Bt (Mechanical testing, impact tests, static and dynamic loads)  
Corresponding Authors:  Corresponding author. E-mail: lyj@aphy.iphy.ac.cn Corresponding author. E-mail: shao_jianli@bit.edu.cn §Corresponding author. E-mail: meiyong1990@126.com   
About author: 
†Corresponding author. E-mail: lyj@aphy.iphy.ac.cn
‡Corresponding author. E-mail: shao_jianli@bit.edu.cn
§Corresponding author. E-mail: meiyong1990@126.com
* Project supported by the National Natural Science Foundation of China (Grant Nos. 51727807 and 11875318), Beijing Institute of Technology Research Fund Program for Young Scholars, and Yue Qi Young Scholar Project in CUMTB.

Cite this article: 

Yi-Fan Xie(谢轶凡), Feng Feng(冯锋), Ying-Jun Li(李英骏)†, Zhi-Qiang Hu(胡志强), Jian-Li Shao(邵建立)‡, and Yong Mei(梅勇)§ Mechanical and microstructural response of densified silica glass under uniaxial compression: Atomistic simulations 2020 Chin. Phys. B 29 108101

Aij/J Bij/m−1 Cij/J⋅m6 aij/(J/m2) bij/(J/m) cij/J
O–O 2.225 × 10−16 2.760 × 1010 2.804 × 10−77 1.510 × 102 −7.925 × 10−8 1.100 × 10−17
Si–O 2.884 × 10−15 4.873 × 1010 2.139 × 10−77 3.413 × 102 −9.361 × 10−8 3.925 × 10−18
Si–Si 0.0 0.0 0.0 0.0 0.0 0.0
Table 1.  

Values of Aij, Bij, Cij, and aij, bij, cij are taken from Refs. [27,31].

3-fold Si/% 4-fold Si/% 5-fold Si/% 6-fold Si/%
S1 0 98.94 1.01 0
S2 1.06 96.55 1.87 0.01
S3 1.05 94.87 3.53 0.04
S4 1.06 90.49 7.77 0.18
S5 1.04 84.26 13.67 0.53
Table 2.  

The proportions of 3-fold, 4-fold, 5-fold, and 6-fold Si atoms of S1–S5.

Fig. 1.  

Normal stress (a) and maximum shear stress (b) as a function of strain for different silica glass samples (S1–S5). Three stages are displayed, and hardening tendency increases with initial densification.

Fig. 2.  

Pressure-density relation for silica glass samples: present study compared with the experiments. Curves S1–S5: under uniaxial compression; circle and triangle: hydrostatic experimental data obtained by Meade et al.[38] and Sato et al.;[39] square and pentagon: shock experimental data obtained by Renou et al.[21] and Sugiura et al.[41] Yield pressure of densified silica glass ranges from 5 to 12 GPa. All curves converge at 12 GPa.

Fig. 3.  

Density as a function of pressure for S1 during uniaxial loading-unloading. Densification and hysteresis are both shown. A, B, C, D and E correspond to strains of 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. The solid line represents the loading path, and the dotted lines are the unloading paths.

Fig. 4.  

RDFs of Si–O (a) Si–Si (b) O–O (c) for S1 at different strains. RDFs of Si–O (d) Si–Si (e) O–O (f) for glass unloaded from different strains. The arrows indicate the change of the peak position. The RDFs of the unloaded sample are consistent with the initial state.

Fig. 5.  

BADs of Si–O–Si (a) O–Si–O (b) for S1 at different strains. BADs of Si–O–Si (c) O–Si–O (d) for glass unloaded from different strains. The arrows indicate the change of the peak position. The Si–O–Si bond angle of silica glass unloaded from the inelastic region becomes smaller.

Fig. 6.  

Si–O coordination number curves of S1 at different strains. The average coordination number of Si–O increases with strain from 4 to around 6.

Fig. 7.  

(a) Fractions of 4-fold, 5-fold, 6-fold coordinated Si atoms versus strain. Pink atoms: Si, blue atoms: O in the insert figure). Here 5-fold Si increases linearly with strain in plastic region and 6-fold Si increases mainly in hardening region. (b) Color micrographs of Si atoms according to the coordination number CN color bar. The figure only includes Si atoms. The cutoff distance for coordination is set to 2.4 Å.

Fig. 8.  

(a) Average atomic displacement as a function of strain, and (b) microstructure of atoms in XY plane at different strains according to the R(i) color bar. The law of atomic lateral diffusion during uniaxial compression is shown.

Fig. 9.  

The density of recovered glass at 0 GPa as a function of the maximum strain reached. Results for all the samples are displayed.

Fig. 10.  

Density as a function of pressure for S3 (a) and S5 (b) during uniaxial loading-unloading. Solid and hollow triangles represent the hydrostatic experimental data on compression and decompression obtained by Sato et al.[42].

Fig. 11.  

BADs of Si–O–Si (a) O–Si–O (b) for the initial state, 0.3 strain, unloaded state of S5. The arrows indicate the change of the peak position. The Si–O–Si bond angle becomes smaller.

4-fold Si/% 5-fold Si/% 6-fold Si/%
S5 84.26 13.67 0.53
0.3 strain 10.58 53.37 34.88
0.3 strain_unload 81.93 15.89 0.66
Table 3.  

The proportions of 4-fold, 5-fold, and 6-fold Si atoms of the initial state, 0.3 strain, and unloaded state of S5.

[1]
Vandembroucq D, Deschamps T, Coussa C, Perriot A, Barthel E, Champagnon B, Martinet C 2008 J. Phys.: Condes. Matter 20 485221 DOI: 10.1088/0953-8984/20/48/485221
[2]
Horbach J 2008 J. Phys.: Condes. Matter 20 244118 DOI: 10.1088/0953-8984/20/24/244118
[3]
Champagnon B, Martinet C, Boudeulle M, Vouagner D, Coussa C, Deschamps T, Grosvalet L 2008 J. Non-Cryst. Solids 354 569 DOI: 10.1016/j.jnoncrysol.2007.07.079
[4]
Stolper E M, Ahrens T J 1987 Geophys. Res. Lett. 14 1231 DOI: 10.1029/GL014i012p01231
[5]
Grimsditch M 1984 Phys. Rev. Lett. 52 2379 DOI: 10.1103/PhysRevLett.52.2379
[6]
Sonneville C, Mermet A, Champagnon B, Martinet C, Margueritat J, Ligny D, Deschamps T, Balima F 2012 J. Chem. Phys. 137 124505 DOI: 10.1063/1.4754601
[7]
Rouxel T, Ji H, Hammouda T, Moréac A 2008 Phys. Rev. Lett. 100 225501 DOI: 10.1103/PhysRevLett.100.225501
[8]
Hemley R J, Mao H K, Bell P M, Mysen B O 1986 Phys. Rev. Lett. 57 747 DOI: 10.1103/PhysRevLett.57.747
[9]
Bridgman P W, Šimon I 1953 J. Appl. Phys. 24 405 DOI: 10.1063/1.1721294
[10]
Williams Q, Jeanloz R 1988 Science 239 902 DOI: 10.1126/science.239.4842.902
[11]
Benmore C J, Soignard E, Amin S A, Guthrie M, Shastri S D, Lee P L, Yarger J L 2010 Phys. Rev. B 81 054105 DOI: 10.1103/PhysRevB.81.054105
[12]
Devine R A B, Arndt J 1987 Phys. Rev. B 35 9376 DOI: 10.1103/PhysRevB.35.9376
[13]
Poe B T, Romano C, Henderson G 2004 J. Non-Cryst. Solids 341 162 DOI: 10.1016/j.jnoncrysol.2004.04.014
[14]
El’kin F S, Brazhkin V V, Khvostantsev L G E, Tsiok O B, Lyapin A G E 2002 Jetp Lett. 75 342 DOI: 10.1134/1.1485264
[15]
Meade C, Hemley R J, Mao H K 1992 Phys. Rev. Lett. 69 1387 DOI: 10.1103/PhysRevLett.69.1387
[16]
Fukui H, Kanzaki M, Hiraoka N, Cai Y Q 2008 Phys. Rev. B 78 012203 DOI: 10.1103/PhysRevB.78.012203
[17]
Zeidler A, Wezka K, Rowlands R F, Whittaker D A, Salmon P S, Polidori A, Drewitt J W E, Klotz S, Fischer H E, Wilding M C, Bull C L, Tucker M G, Wilson M 2014 Phys. Rev. Lett. 113 135501 DOI: 10.1103/PhysRevLett.113.135501
[18]
Guerette M, Ackerson M R, Thomas J, Yuan F, Watson E B, Walker D, Huang L 2015 Sci. Rep. 5 15343 DOI: 10.1038/srep15343
[19]
Dávila L P, Caturla M J, Kubota A, Sadigh B, Rubia T D, Shackelford J F, Risbud S H, Garofalini S H 2003 Phys. Rev. Lett. 91 205501 DOI: 10.1103/PhysRevLett.91.205501
[20]
Kubota A, Caturla M J, Davila L, Stolken J, Sadigh B, Quong A, Rubenchik A M, Feit M D 2002 Laser-Induced Damage in Optical Materials October 1–3, 2001 Boulder, CO, USA 108 DOI: 10.1117/12.461717
[21]
Renou R, Soulard L, Lescoute E, Dereure C, Loison D, Guin J P 2017 J. Phys. Chem. C 121 13324 DOI: 10.1021/acs.jpcc.7b01324
[22]
Mantisi B, Tanguy A, Kermouche G, Barthel E 2012 Eur. Phys. J. B 85 304 DOI: 10.1140/epjb/e2012-30317-6
[23]
Schill W, Heyden S, Conti S, Ortiz M 2018 J. Mech. Phys. Solids 113 105 DOI: 10.1016/j.jmps.2018.01.004
[24]
Su R, Xiang M, Chen J, Jiang S, Wei H 2014 J. Appl. Phys. 115 193508 DOI: 10.1063/1.4876742
[25]
Huang L, Yuan F, Guerette M, Zhao Q, Sundararaman S 2017 J. Mater. Res. 32 174 DOI: 10.1557/jmr.2016.397
[26]
Lacks D J 2000 Phys. Rev. Lett. 84 4629 DOI: 10.1103/PhysRevLett.84.4629
[27]
Van Beest B W H, Kramer G J, Van Santen R A 1990 Phys. Rev. Lett. 64 1955 DOI: 10.1103/PhysRevLett.64.1955
[28]
Koziatek P, Barrat J L, Rodney D 2015 J. Non-Cryst. Solids 414 7 DOI: 10.1016/j.jnoncrysol.2015.01.009
[29]
Sundararaman S, Ching W Y, Huang L P 2016 J. Non-Cryst. Solids 445–446 102 DOI: 10.1016/j.jnoncrysol.2016.05.012
[30]
Le V V, Nguyen G T 2019 J. Non-Cryst. Solids 505 225 DOI: 10.1016/j.jnoncrysol.2018.11.016
[31]
Barmes F, Soulard L, Mareschal M 2006 Phys. Rev. B 73 224108 DOI: 10.1103/PhysRevB.73.224108
[32]
Yuan F, Huang L 2015 Sci. Rep. 4 5035 DOI: 10.1038/srep05035
[33]
Mozzi R L, Warren B E 1969 J. Appl. Crystallogr. 2 164 DOI: 10.1107/S0021889869006868
[34]
Ebrahem F, Bamer F, Markert B 2018 Comput. Mater. Sci. 149 162 DOI: 10.1016/j.commatsci.2018.03.017
[35]
Plimpton S 1995 J. Comput. Phys. 117 1 DOI: 10.1006/jcph.1995.1039
[36]
Hoover W G 1985 Phys. Rev. A 31 1695 DOI: 10.1103/PhysRevA.31.1695
[37]
Huang L, Kieffer J 2004 Phys. Rev. B 69 224203 DOI: 10.1103/PhysRevB.69.224203
[38]
Meade C, Jeanloz R 1987 Phys. Rev. B 35 236 DOI: 10.1103/PhysRevB.35.236
[39]
Sato T, Funamori N 2008 Phys. Rev. Lett. 101 255502 DOI: 10.1103/PhysRevLett.101.255502
[40]
Tracy S J, Turneaure S J, Duffy T S 2018 Phys. Rev. Lett. 120 135702 DOI: 10.1103/PhysRevLett.120.135702
[41]
Sugiura H, Kondo K, Sawaoka A 1981 J. Appl. Phys. 52 3375 DOI: 10.1063/1.329161
[42]
Wakabayashi D, Funamori N, Sato T, Taniguchi T 2011 Phys. Rev. B 84 144103 DOI: 10.1103/PhysRevB.84.144103
[43]
Sonneville C, Deschamps T, Martinet C, de Ligny D, Mermet A, Champagnon B 2013 J. Non-Cryst. Solids 382 133 DOI: 10.1016/j.jnoncrysol.2012.12.002
[44]
Sato T, Funamori N 2010 Phys. Rev. B 82 184102 DOI: 10.1103/PhysRevB.82.184102
[45]
Liang Y, Miranda C R, Scandolo S 2007 Phys. Rev. B 75 024205 DOI: 10.1103/PhysRevB.75.024205
[1] Atomistic simulations on adhesive contact of single crystal Cu and wear behavior of Cu-Zn alloy
You-Jun Ye(叶有俊), Le Qin (秦乐), Jing Li (李京), Lin Liu(刘麟), and Ling-Kang Wu(吴凌康). Chin. Phys. B, 2021, 30(2): 026801.
[2] Atomistic study on tensile fracture of densified silica glass and its dependence on strain rate
Zhi-Qiang Hu(胡志强), Jian-Li Shao(邵建立), Yi-Fan Xie(谢轶凡), and Yong Mei(梅勇). Chin. Phys. B, 2020, 29(12): 128101.
[3] Irradiation-induced void evolution in iron: A phase-field approach with atomistic derived parameters
Yuan-Yuan Wang(王园园), Jian-Hua Ding(丁建华), Wen-Bo Liu(柳文波), Shao-Song Huang(黄绍松), Xiao-Qin Ke(柯小琴), Yun-Zhi Wang(王云志), Chi Zhang(张弛), Ji-Jun Zhao(赵纪军). Chin. Phys. B, 2017, 26(2): 026102.
[4] Strain-rate-induced bcc-to-hcp phase transformation of Fe nanowires
Hongxian Xie(谢红献), Tao Yu(于涛), Wei Fang(方伟), Fuxing Yin(殷福星), Dil Faraz Khan. Chin. Phys. B, 2016, 25(12): 126201.
[5] Indenter size effect on the reversible incipient plasticity of Al (001) surface: Quasicontinuum study
Tang Dan (唐丹), Shao Yu-Fei (邵宇飞), Li Jiu-Hui (李久会), Zhao Xing (赵星), Qi Yang (祁阳). Chin. Phys. B, 2015, 24(8): 086805.
[6] Brittle-ductile behavior of a nanocrack in nanocrystalline Ni: A quasicontinuum study
Shao Yu-Fei (邵宇飞), Yang Xin (杨鑫), Zhao Xing (赵星), Wang Shao-Qing (王绍青). Chin. Phys. B, 2012, 21(9): 093104.
[7] Orientation dependence of structural transition in fcc Al driven under uniaxial compression by atomistic simulations
Li Li(李莉), Shao Jian-Li(邵建立), Duan Su-Qing(段素青), and Liang Jiu-Qing(梁九卿) . Chin. Phys. B, 2011, 20(4): 046402.
[8] The charging stability of different silica glasses studied by measuring the secondary electron emission yield
Zhao Su-Ling(赵谡玲) and Bertrand Poumellec. Chin. Phys. B, 2011, 20(3): 037901.
[9] Lanthanum-doped Bi4Ti3O12 ceramics prepared by high-pressure technique
Lin Xue(林雪), Guan Qing-Feng(关庆丰), Liu Yang(刘洋), and Li Hai-Bo(李海波). Chin. Phys. B, 2010, 19(10): 107701.
[10] Grain size reduction of copper subjected to repetitive uniaxial compression combined with accumulative fold
Zou Yong-Tao(邹永涛), Lei Li(雷力), Wang Zhao(王赵), Wang Jiang-Hua(王江华), Zhang Wei(张伟), and He Duan-Wei(贺端威). Chin. Phys. B, 2009, 18(2): 815-820.
No Suggested Reading articles found!