Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117502    DOI: 10.1088/1674-1056/aba2e6
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS

Zhongqiang Suo(索忠强)1, Jianfeng Dai(戴剑锋)1,2, †, Shanshan Gao(高姗姗)1, and Haoran Gao(高浩然)1$
1 School of Science, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nanoferrous Metals, Lanzhou 730050, China
Abstract  

The influence of transition metals (Sc, Ti, V, Cr, and Mn) doping at different distances on the magnetism of CdS is studied by using generalized gradient approximation combined with Hubbard U in the VASP package. The results show that the doping systems are more stable, easy to form, and the wurtzite structure of CdS is not changed. It is found that the systems are antiferromagnetic (AFM) when nearest neighbor doping, which is attributed to the direct charge transfers between two impurity ions. The systems are ferromagnetic (FM) when the doping distance increases further, since the double exchange interactions are observed among the 3d orbital of the transition metal, the Cd-5s and the S-3p orbitals are at conduction band minimum. We also found that the total magnetic moment of each ferromagnetic system increases with the order of SC to Mn-doping, the spin polarizability of Cr-doping system is 100%. The estimated Curie temperature indicates that the Cr- and Mn-doped CdS in this paper can achieve room-temperature ferromagnetic characteristics, especially the Cr doping is the most prominent. And TM-doping does not destroy the semiconductor characteristics of the system. Therefore, the TM-doped CdS can be used as an ideal dilute magnetic semiconductor functional material.

Keywords:  transition metals doping      electronic structure      magnetism      CdS      Curie temperature  
Received:  13 May 2020      Revised:  02 July 2020      Published:  03 November 2020
Corresponding Authors:  Corresponding author. E-mail: daijf@lut.cn   

Cite this article: 

Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$ Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS 2020 Chin. Phys. B 29 117502

Fig. 1.  

Supercell (2 × 2 × 2) model of pure (a) and doped CdS [(b)–(e)]. Magenta, cyan, and yellow are Cd, doping atoms, and S, respectively.

Fig. 2.  

The volumes of each system after structural optimizations.

Fig. 3.  

The EF of each doping system.

Structure Mag/μB TM1/μB TM2/μB
Sc1 0.938 0.301 0.272
Sc2 0.891 0.257 0.257
Sc3 0 0.160 −0.159
Sc4 0 0.216 −0.216
Ti1 0 1.238 1.239
Ti2 −3.989 1.466 1.466
Ti3 3.996 1.492 1.482
Ti4 3.987 1.487 1.487
V1 0 2.436 −2.437
V2 5.950 2.410 2.410
V3 5.949 2.427 2.416
V4 5.859 2.443 2.443
Cr1 0 3.442 −3.442
Cr2 8.004 3.478 3.479
Cr3 7.996 3.485 3.465
Cr4 7.999 3.489 3.487
Mn1 0 4.190 −4.189
Mn2 10.000 4.157 4.227
Mn3 9.998 4.166 4.164
Mn4 9.912 4.174 4.174
Table 1.  

The magnetic moment of each system and net magnetic moment of the TM atom. The minus sign denotes spin-down.

Fig. 4.  

The partial electron density at CBM and the charge density differential distribution: (a) pure, (b) Ti1, (c) Ti2, (d) Ti3, and (e) Ti4.

Fig. 5.  

The partial density of states (PDOS) for each system.

Fig. 6.  

The total density of states (TDOS) and PDOS of the pure (a), Sc2 (b), Ti2 (c), V2 (d), Cr2 (e), and Mn2 (f) structures.

Fig. 7.  

Energy band structures of pure (a), Sc2 (b), Ti2 (c), V2 (d), Cr2 (e), and Mn2 (f) structures. Red and blue indicates spin-up and spin-down, respectively.

System Jdd/meV Nsd/eV Npd/eV Δ E/meV Coupling Tc/K
Sc1 21.16 0.78 0.11 38.47 FM 297
Sc2 2.61 0.64 0.21 4.39 FM 34
Sc3 −7.47 AFM
Sc4 −17.22 AFM
Ti1 −4.18 AFM
Ti2 1.03 0.18 0.06 10.58 FM 81
Ti3 0.62 0.21 0.05 12.28 FM 95
Ti4 3.07 0.11 0.06 61.10 FM 472
V1 −30.46 AFM
V2 0.01 2.82 0.18 0.09 FM 1
V3 0.02 2.81 0.10 0.70 FM 5
V4 0.01 2.84 0.21 0.18 FM 2
Cr1 0.10 AFM
Cr2 5.17 2.30 1.96 372.78 FM *
Cr3 6.34 3.73 0.14 455.96 FM *
Cr4 6.49 3.78 0.27 467.02 FM *
Mn1 50.35 AFM
Mn2 0.74 0.10 0.01 81.01 FM 627
Mn3 0.94 0.38 0.09 103.18 FM 798
Mn4 0.47 0.02 0.01 50.56 FM 391
Table 2.  

Magnetic performance-related parameters. The star * means more than 1000.

[1]
Boudjelal M, Belfedal A, Bouadjemi B 2019 Chin. J. Phys. 61 155 DOI: 10.1016/j.cjph.2019.09.004
[2]
Kamran M A, Liu R, Shi L J 2013 J. Phys. Chem. C 117 17777 DOI: 10.1021/jp402831n
[3]
Reddy Y D, Reddy B K, Reddy D S 2008 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 70 934 DOI: 10.1016/j.saa.2007.11.025
[4]
Suo Z, Dai J 2019 Results Phys. 15 102801 DOI: 10.1016/j.rinp.2019.102801
[5]
Nabi A 2016 Comput. Mater. Sci. 112 210 DOI: 10.1016/j.commatsci.2015.10.039
[6]
Awschalom D D, Kawakami R K 2000 Nature 408 923 DOI: 10.1038/35050194
[7]
Kim D S, Cho Y J, Park J 2007 J. Phys. Chem. C 111 10861 DOI: 10.1021/jp072364k
[8]
Bogle K A, Ghosh S, Dhole S D 2008 Chem. Mat. 20 440 DOI: 10.1021/cm702118w
[9]
Kumar S, Kumar S, Jain S 2012 Appl. Nanosci. 2 127 DOI: 10.1007/s13204-011-0046-8
[10]
Murali G, Reddy D A, Prakash B P 2012 Physica B 407 2084 DOI: 10.1016/j.physb.2012.02.011
[11]
Murali G, Reddy D A, Giribabu G 2013 J. Alloys Compd. 581 849 DOI: 10.1016/j.jallcom.2013.08.004
[12]
Zhao R, Wang P, Yang T 2015 J. Phys. Chem. C 119 28679 DOI: 10.1021/acs.jpcc.5b10444
[13]
Elavarthi P, Kumar A A, Murali G 2016 J. Alloys Compd. 656 510 DOI: 10.1016/j.jallcom.2015.09.244
[14]
Wang P, Zhao R, Li Z 2016 Crystengcomm 18 2607 DOI: 10.1039/C6CE00143B
[15]
Anbarasi M, Nagarethinam V S, Usharani K 2017 J. Mater. Sci.-Mater. Electron. 28 14848 DOI: 10.1007/s10854-017-7356-x
[16]
Samiyammal P, Parasuraman K, Prabh D 2017 Surf. Eng. 33 835 DOI: 10.1080/02670844.2017.1303981
[17]
Rahman A U, Ullah H, Jamil A 2019 Physica B 570 209 DOI: 10.1016/j.physb.2019.06.012
[18]
Saikia D, Jami J, Borah J P 2019 Physica B 565 25 DOI: 10.1016/j.physb.2019.04.022
[19]
Suo Z, Dai J, Gao S 2020 Results Phys. 17 103058 DOI: 10.1016/j.rinp.2020.103058
[20]
Heiba Z K, Mohamed M B, Mostafa N Y 2019 Appl. Phys. A-Mater. Sci. Process. 125 132 DOI: 10.1007/s00339-019-2428-9
[21]
Quintelas C, Rocha Z, Silva B 2009 Chem. Eng. J. 149 319 DOI: 10.1016/j.cej.2008.11.025
[22]
Paula A T, Andrei M V, Kholkin L 2005 Acta Mater. 53 5061 DOI: 10.1016/j.actamat.2005.07.029
[23]
Dai J, Suo Z, Li Z 2019 Results Phys. 15 102649 DOI: 10.1016/j.rinp.2019.102649
[24]
Wang C, Wang H, Fang Z Y 2009 J. Alloys Compd 486 702 DOI: 10.1016/j.jallcom.2009.07.043
[25]
Thambidurai M, Muthukumarasamy N 2012 J. Mater. Sci.-Mater. Electron. 23 618 DOI: 10.1007/s10854-011-0454-2
[26]
Freeman J, Watson R E 1961 Phys. Rev. 124 1439 DOI: 10.1103/PhysRev.124.1439
[27]
Zener C 1951 Phys. Rev. 81 440 DOI: 10.1103/PhysRev.81.440
[28]
Zener C 1951 Phys. Rev 82 403 DOI: 10.1103/PhysRev.82.403
[29]
Li Y J, Yu K M, Chen G B 2020 J. Alloys Compd. 822 153567 DOI: 10.1016/j.jallcom.2019.153567
[30]
Zhang J F, Wageh S, Al-Ghamdi A A 2016 Appl. Catal. B-Environ. 192 101 DOI: 10.1016/j.apcatb.2016.03.058
[31]
Sato K, Dederics P H, Yoshida H K 2003 Europhys. Lett. 61 403 DOI: 10.1209/epl/i2003-00191-8
[32]
Story T, Gaazka R R, Frankel R B 1986 Phys. Rev. Lett. 56 777 DOI: 10.1103/PhysRevLett.56.777
[33]
Nabi A 2016 Comput. Mater. Sci. 112 210 DOI: 10.1016/j.commatsci.2015.10.039
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[3] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[4] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[5] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[6] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[7] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[8] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[9] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[10] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[11] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[12] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[13] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[14] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[15] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
No Suggested Reading articles found!