Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117502    DOI: 10.1088/1674-1056/aba2e6
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS

Zhongqiang Suo(索忠强)1, Jianfeng Dai(戴剑锋)1,2, †, Shanshan Gao(高姗姗)1, and Haoran Gao(高浩然)1$
1 School of Science, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nanoferrous Metals, Lanzhou 730050, China
Abstract  

The influence of transition metals (Sc, Ti, V, Cr, and Mn) doping at different distances on the magnetism of CdS is studied by using generalized gradient approximation combined with Hubbard U in the VASP package. The results show that the doping systems are more stable, easy to form, and the wurtzite structure of CdS is not changed. It is found that the systems are antiferromagnetic (AFM) when nearest neighbor doping, which is attributed to the direct charge transfers between two impurity ions. The systems are ferromagnetic (FM) when the doping distance increases further, since the double exchange interactions are observed among the 3d orbital of the transition metal, the Cd-5s and the S-3p orbitals are at conduction band minimum. We also found that the total magnetic moment of each ferromagnetic system increases with the order of SC to Mn-doping, the spin polarizability of Cr-doping system is 100%. The estimated Curie temperature indicates that the Cr- and Mn-doped CdS in this paper can achieve room-temperature ferromagnetic characteristics, especially the Cr doping is the most prominent. And TM-doping does not destroy the semiconductor characteristics of the system. Therefore, the TM-doped CdS can be used as an ideal dilute magnetic semiconductor functional material.

Keywords:  transition metals doping      electronic structure      magnetism      CdS      Curie temperature  
Received:  13 May 2020      Revised:  02 July 2020      Accepted manuscript online:  06 July 2020
Corresponding Authors:  Corresponding author. E-mail: daijf@lut.cn   

Cite this article: 

Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$ Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS 2020 Chin. Phys. B 29 117502

Fig. 1.  

Supercell (2 × 2 × 2) model of pure (a) and doped CdS [(b)–(e)]. Magenta, cyan, and yellow are Cd, doping atoms, and S, respectively.

Fig. 2.  

The volumes of each system after structural optimizations.

Fig. 3.  

The EF of each doping system.

Structure Mag/μB TM1/μB TM2/μB
Sc1 0.938 0.301 0.272
Sc2 0.891 0.257 0.257
Sc3 0 0.160 −0.159
Sc4 0 0.216 −0.216
Ti1 0 1.238 1.239
Ti2 −3.989 1.466 1.466
Ti3 3.996 1.492 1.482
Ti4 3.987 1.487 1.487
V1 0 2.436 −2.437
V2 5.950 2.410 2.410
V3 5.949 2.427 2.416
V4 5.859 2.443 2.443
Cr1 0 3.442 −3.442
Cr2 8.004 3.478 3.479
Cr3 7.996 3.485 3.465
Cr4 7.999 3.489 3.487
Mn1 0 4.190 −4.189
Mn2 10.000 4.157 4.227
Mn3 9.998 4.166 4.164
Mn4 9.912 4.174 4.174
Table 1.  

The magnetic moment of each system and net magnetic moment of the TM atom. The minus sign denotes spin-down.

Fig. 4.  

The partial electron density at CBM and the charge density differential distribution: (a) pure, (b) Ti1, (c) Ti2, (d) Ti3, and (e) Ti4.

Fig. 5.  

The partial density of states (PDOS) for each system.

Fig. 6.  

The total density of states (TDOS) and PDOS of the pure (a), Sc2 (b), Ti2 (c), V2 (d), Cr2 (e), and Mn2 (f) structures.

Fig. 7.  

Energy band structures of pure (a), Sc2 (b), Ti2 (c), V2 (d), Cr2 (e), and Mn2 (f) structures. Red and blue indicates spin-up and spin-down, respectively.

System Jdd/meV Nsd/eV Npd/eV Δ E/meV Coupling Tc/K
Sc1 21.16 0.78 0.11 38.47 FM 297
Sc2 2.61 0.64 0.21 4.39 FM 34
Sc3 −7.47 AFM
Sc4 −17.22 AFM
Ti1 −4.18 AFM
Ti2 1.03 0.18 0.06 10.58 FM 81
Ti3 0.62 0.21 0.05 12.28 FM 95
Ti4 3.07 0.11 0.06 61.10 FM 472
V1 −30.46 AFM
V2 0.01 2.82 0.18 0.09 FM 1
V3 0.02 2.81 0.10 0.70 FM 5
V4 0.01 2.84 0.21 0.18 FM 2
Cr1 0.10 AFM
Cr2 5.17 2.30 1.96 372.78 FM *
Cr3 6.34 3.73 0.14 455.96 FM *
Cr4 6.49 3.78 0.27 467.02 FM *
Mn1 50.35 AFM
Mn2 0.74 0.10 0.01 81.01 FM 627
Mn3 0.94 0.38 0.09 103.18 FM 798
Mn4 0.47 0.02 0.01 50.56 FM 391
Table 2.  

Magnetic performance-related parameters. The star * means more than 1000.

[1]
Boudjelal M, Belfedal A, Bouadjemi B 2019 Chin. J. Phys. 61 155 DOI: 10.1016/j.cjph.2019.09.004
[2]
Kamran M A, Liu R, Shi L J 2013 J. Phys. Chem. C 117 17777 DOI: 10.1021/jp402831n
[3]
Reddy Y D, Reddy B K, Reddy D S 2008 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 70 934 DOI: 10.1016/j.saa.2007.11.025
[4]
Suo Z, Dai J 2019 Results Phys. 15 102801 DOI: 10.1016/j.rinp.2019.102801
[5]
Nabi A 2016 Comput. Mater. Sci. 112 210 DOI: 10.1016/j.commatsci.2015.10.039
[6]
Awschalom D D, Kawakami R K 2000 Nature 408 923 DOI: 10.1038/35050194
[7]
Kim D S, Cho Y J, Park J 2007 J. Phys. Chem. C 111 10861 DOI: 10.1021/jp072364k
[8]
Bogle K A, Ghosh S, Dhole S D 2008 Chem. Mat. 20 440 DOI: 10.1021/cm702118w
[9]
Kumar S, Kumar S, Jain S 2012 Appl. Nanosci. 2 127 DOI: 10.1007/s13204-011-0046-8
[10]
Murali G, Reddy D A, Prakash B P 2012 Physica B 407 2084 DOI: 10.1016/j.physb.2012.02.011
[11]
Murali G, Reddy D A, Giribabu G 2013 J. Alloys Compd. 581 849 DOI: 10.1016/j.jallcom.2013.08.004
[12]
Zhao R, Wang P, Yang T 2015 J. Phys. Chem. C 119 28679 DOI: 10.1021/acs.jpcc.5b10444
[13]
Elavarthi P, Kumar A A, Murali G 2016 J. Alloys Compd. 656 510 DOI: 10.1016/j.jallcom.2015.09.244
[14]
Wang P, Zhao R, Li Z 2016 Crystengcomm 18 2607 DOI: 10.1039/C6CE00143B
[15]
Anbarasi M, Nagarethinam V S, Usharani K 2017 J. Mater. Sci.-Mater. Electron. 28 14848 DOI: 10.1007/s10854-017-7356-x
[16]
Samiyammal P, Parasuraman K, Prabh D 2017 Surf. Eng. 33 835 DOI: 10.1080/02670844.2017.1303981
[17]
Rahman A U, Ullah H, Jamil A 2019 Physica B 570 209 DOI: 10.1016/j.physb.2019.06.012
[18]
Saikia D, Jami J, Borah J P 2019 Physica B 565 25 DOI: 10.1016/j.physb.2019.04.022
[19]
Suo Z, Dai J, Gao S 2020 Results Phys. 17 103058 DOI: 10.1016/j.rinp.2020.103058
[20]
Heiba Z K, Mohamed M B, Mostafa N Y 2019 Appl. Phys. A-Mater. Sci. Process. 125 132 DOI: 10.1007/s00339-019-2428-9
[21]
Quintelas C, Rocha Z, Silva B 2009 Chem. Eng. J. 149 319 DOI: 10.1016/j.cej.2008.11.025
[22]
Paula A T, Andrei M V, Kholkin L 2005 Acta Mater. 53 5061 DOI: 10.1016/j.actamat.2005.07.029
[23]
Dai J, Suo Z, Li Z 2019 Results Phys. 15 102649 DOI: 10.1016/j.rinp.2019.102649
[24]
Wang C, Wang H, Fang Z Y 2009 J. Alloys Compd 486 702 DOI: 10.1016/j.jallcom.2009.07.043
[25]
Thambidurai M, Muthukumarasamy N 2012 J. Mater. Sci.-Mater. Electron. 23 618 DOI: 10.1007/s10854-011-0454-2
[26]
Freeman J, Watson R E 1961 Phys. Rev. 124 1439 DOI: 10.1103/PhysRev.124.1439
[27]
Zener C 1951 Phys. Rev. 81 440 DOI: 10.1103/PhysRev.81.440
[28]
Zener C 1951 Phys. Rev 82 403 DOI: 10.1103/PhysRev.82.403
[29]
Li Y J, Yu K M, Chen G B 2020 J. Alloys Compd. 822 153567 DOI: 10.1016/j.jallcom.2019.153567
[30]
Zhang J F, Wageh S, Al-Ghamdi A A 2016 Appl. Catal. B-Environ. 192 101 DOI: 10.1016/j.apcatb.2016.03.058
[31]
Sato K, Dederics P H, Yoshida H K 2003 Europhys. Lett. 61 403 DOI: 10.1209/epl/i2003-00191-8
[32]
Story T, Gaazka R R, Frankel R B 1986 Phys. Rev. Lett. 56 777 DOI: 10.1103/PhysRevLett.56.777
[33]
Nabi A 2016 Comput. Mater. Sci. 112 210 DOI: 10.1016/j.commatsci.2015.10.039
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[5] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[6] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[7] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[8] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[9] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[12] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[13] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[14] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!