Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108503    DOI: 10.1088/1674-1056/ab9c0c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition

Deepika1, Raju Kumar1, Ritesh Kumar1, Kamdeo Prasad Yadav1, Pratyush Vaibhav2, Seema Sharma3, Rakesh Kumar Singh4, and Santosh Kumar1,
1 College of Commerce, Arts and Science, Patna, Bihar, India
2 Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, India
3 Anugrah Narayan College, Patna, Bihar, India
4 Aryabhatta Knowledge University, Patna, Bihar, India
Abstract  

Zn0.90Ni0.10O nanoparticles have been synthesized by single-bath two-electrode electrodeposition at constant voltage. X-ray diffraction, UV vis and photoluminescence studies reveal that a single-phase polycrystalline hcp wurtzite crystal structure of ZnO is evolved. The material consists of a large number of defects such as oxygen vacancy (Ov) and zinc interstitial (Zi). The magnetization study reveals that the sample exhibits room-temperature global ferromagnetism and the ferromagnetic ordering seems to be defect induced via bound magnetic polaron mechanism, and double exchange is also expected to have played role. Interesting optoelectronic properties have been found in the synthesized sample and the material seems to be a potential candidate to be used as a UV sensor. Such a transition metal doped ZnO based dilute magnetic semiconducting system exhibiting room-temperature ferromagnetism is likely to be first of its kind in the sense that such materials have not yet been reported to be synthesized by the simple method of electrodeposition to the best of our knowledge on the basis of ample literature review.

Keywords:  dilute magnetic semiconductors (DMS)      bound magnetic polaron      photoluminescence      ferromagnetism  
Received:  16 April 2020      Revised:  16 May 2020      Accepted manuscript online:  12 June 2020
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  75.25.-j (Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  75.30.Et (Exchange and superexchange interactions)  
Corresponding Authors:  Corresponding author. E-mail: skphysics@yahoo.co.in   
About author: 
†Corresponding author. E-mail: skphysics@yahoo.co.in
* Project supported by the UGC-DAE, Consortium for Scientific Research, Indore through its CRS project bearing No. CSR-IC/MSRSR-12/CRS-220/2017-18/1301.

Cite this article: 

Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar† Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition 2020 Chin. Phys. B 29 108503

Fig. 1.  

XRD pattern of (a) Ni-doped ZnO and (b) undoped ZnO, both synthesized by electrodeposition and annealed at 700 °C in air for one hour.

Fig. 2.  

(a) UV visible graph of un-doped ZnO (synthesized by electrodeposition and annealed at 700 °C in air for one hour) for absorbance and band gap determination. (b) UV visible graph of Ni-doped ZnO (synthesized by electrodeposition and annealed at 700 °C in air for one hour) for absorbance and band gap determination.

Fig. 3.  

(a) PL spectra of Ni-doped ZnO synthesized by electrodeposition and annealed at 700 °C in air for one hour. (b) PL spectra of undoped ZnO synthesized by electrodeposition and annealed at 700 °C in air for one hour.

Fig. 4.  

VSM graph of Ni-doped ZnO synthesized by electrodeposition and annealed at 700 °C in air for one hour.

[1]
Wolf S A, Awschalom D D, Nuhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Tregger D M 2001 Science 294 1488 DOI: 10.1126/science.1065389
[2]
Sarma S D 2001 Am. Sci. 89 516 DOI: 10.1511/2001.6.516
[3]
Zntic I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323 DOI: 10.1103/RevModPhys.76.323
[4]
Awschalom D D, Flatte M E 2007 Nat Phys. 3 153 DOI: 10.1038/nphys551
[5]
Felser C, Fecher G H, Balke B 2007 Angew Chem. 46 668 DOI: 10.1002/anie.200601815
[6]
Furdyna J K 1988 J. Appl. Phys. 64 R29 DOI: 10.1063/1.341700
[7]
Ohno H 1998 Science 281 951 DOI: 10.1126/science.281.5379.951
[8]
Dietl T, Ohno H, Matsukura F, Cibbert J, Ferrand D 2000 Science 287 1019 DOI: 10.1126/science.287.5455.1019
[9]
Dietl T 2002 Semicond. Sci. Technol. 17 377 DOI: 10.1088/0268-1242/17/4/310
[10]
Dietl T 2003 Nat. Mater. 2 646 DOI: 10.1038/nmat989
[11]
Prellier W, Fouchet A, Mercey B 2003 J. Phys.: Condens. Matter 15 R1583 DOI: 10.1088/0953-8984/15/37/R01
[12]
Pearton S J, Heo W H, Ivill M, Norton D P, Steinner T 2004 Semicond. Sci. Technol. 19 R59 DOI: 10.1088/0268-1242/19/10/R01
[13]
Bryan J D, Gainelin D R 2005 Prog. Inorg. Chem. 54 47 DOI: 10.1002/0471725560.ch2
[14]
Macdonald A H, Schiffer P, Samarth N 2005 Nat. Mater. 4 195 DOI: 10.1038/nmat1325
[15]
Kuroda S, Nishizawa N, Takita K, Mitome M, Bando Y, Osuch K, Dietl T 2007 Nat. Mater. 6 440 DOI: 10.1038/nmat1910
[16]
Sundaresan A, Rao C N R 2009 Nano Today 4 96 DOI: 10.1016/j.nantod.2008.10.002
[17]
Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1 DOI: 10.1016/j.mser.2008.04.002
[18]
Potzat K, Zhou S 2009 Phys. Status Solid B 246 1147 DOI: 10.1002/pssb.200844272
[19]
Janisch R, Gopal P, Spladin N A 2005 J. Phys.: Conden Matter 17 R657 DOI: 10.1088/0953-8984/17/27/R01
[20]
Ogale Satishchandra B 2010 Adv. Mater. 22 3125 DOI: 10.1002/adma.200903891
[21]
Wakano T, Fujimura N, Morinaga Y, Abe N, Ashida A 2001 Physica E 10 260 DOI: 10.1016/S1386-9477(01)00095-9
[22]
Schwartz D A, Kittils K R, Gamellin D R 2004 Appl. Phys. Lett. 85 1395 DOI: 10.1063/1.1785872
[23]
Radovanovic P V, Norberg N S, Menally K E, Gamellin D R 2002 J. Am. Chem. Soc. 124 15192 DOI: 10.1021/ja028416v
[24]
Srinet G, Kumar R, Sajal V 2013 J. Appl. Phys. 114 033912 DOI: 10.1063/1.4813868
[25]
Liu X, Lin F, Sun L, Cheng W, Ma X, Shi W 2006 Appl. Phys. Lett. 88 062508 DOI: 10.1063/1.2170420
[26]
Liu X J, Zhu X Y, Song C, Zeng F, Pan F 2009 J. Phys. D: Appl. Phys. 42 035004 DOI: 10.1088/0022-3727/42/3/035004
[27]
Satyarthi P, Ghosh S, Pandey B, Kumar P, Chen C L, Dong C L, Pong W F, Kanjibal D, Asokan K, Srivastava P 2013 J. Appl. Phys. 113 18 183708 DOI: 10.1063/1.4804253
[28]
Tong L N, He X M, Han H B, Hu J L, Xia A L, Tong Y 2010 Solid State Commun. 150 1112 DOI: 10.1016/j.ssc.2010.03.029
[29]
Singhal R K, Sharma S C, Kumari P, Kumar S, Xig Y T, Deshpande U P, Shripak T, Saitovitch E 2011 J. Appl. Phys. 109 063907 DOI: 10.1063/1.3556458
[30]
Anindita Samanta, Goswami M N, Mahapatra P K 2018 J. Alloys Compd. 730 399 DOI: 10.1016/j.jallcom.2017.09.334
[31]
Ali M, Sharif S, Anjum S, Imran M, Ikram M, Naz M, Ali S 2020 Mater Res. Express 6 1250d5 DOI: 10.1088/2053-1591/ab6383
[32]
Prashant Kumar Mishra, Rahul Amin, Sajal Biring, Somaditya Sen 2019 AIP Conf. Proc. 2100 020121 DOI: 10.1063/1.5098675
[33]
Lu Y B, Dai Y, Guo M, Yu L, Huang B B 2013 Phys. Chem. Chem. Phys. 15 5208 DOI: 10.1039/c3cp44047h
[34]
Yang K S, Wu R Q, Shen L, Feng Y P, Dai Y, Huang B B 2010 Phys. Rev. 81 125211 DOI: 10.1103/PhysRevB.81.125211
[35]
Pan H, Yi J B, Shen L, Wu R Q, Yang J H, Lin J Y, Feng Y P, Ding J, Van L H, Yin J H 2007 Phys. Rev. Lett. 99 127201 DOI: 10.1103/PhysRevLett.99.127201
[36]
Nayak Sanjeev K, Gruner E, Sung Sakong, Shreekantha Sil, Peter Kartzer, Behera N, Peter Entel 2012 Phys. Rev. B 86 054441 DOI: 10.1103/PhysRevB.86.054441
[37]
Liu L, Peter Y Yu, Ma Z X, Mao S 2008 Phys. Rev. Lett. 100 127203 DOI: 10.1103/PhysRevLett.100.127203
[38]
Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D, Feng Y P 2008 Phys. Rev. B 78 073306 DOI: 10.1103/PhysRevB.78.073306
[1] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[2] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[3] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[4] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[5] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[6] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[7] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[8] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[9] Microstructure and ferromagnetism ofheavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[10] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
[11] Photoluminescence changes of C70 nanotubes induced by laser irradiation
Han-Da Wang(王汉达), De-Di Liu(刘德弟)†, Yang-Yang He(何洋洋), Hong-Sheng Jia(贾洪声)‡, Ran Liu(刘然), Bo Liu(刘波), Nai-Sen Yu(于乃森), and Zhen-Yi Zhang(张振翼). Chin. Phys. B, 2020, 29(10): 104209.
[12] Low temperature photoluminescence study of GaAs defect states
Jia-Yao Huang(黄佳瑶), Lin Shang(尚林), Shu-Fang Ma(马淑芳), Bin Han(韩斌), Guo-Dong Wei(尉国栋), Qing-Ming Liu(刘青明), Xiao-Dong Hao(郝晓东), Heng-Sheng Shan(单恒升), Bing-She Xu(许并社). Chin. Phys. B, 2020, 29(1): 010703.
[13] Thickness-dependent excitonic properties of atomically thin 2H-MoTe2
Jin-Huan Li(李金焕), Dan Bing(邴单), Zhang-Ting Wu(吴章婷), Guo-Qing Wu(吴国庆), Jing Bai(白静), Ru-Xia Du(杜如霞), Zheng-Qing Qi(祁正青). Chin. Phys. B, 2020, 29(1): 017802.
[14] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[15] Micron-sized diamond particles containing Ge-V and Si-V color centers
Hang-Cheng Zhang(章航程), Cheng-Ke Chen(陈成克), Ying-Shuang Mei(梅盈爽), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2019, 28(7): 076103.
No Suggested Reading articles found!