Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 080303    DOI: 10.1088/1674-1056/ab9737
GENERAL Prev   Next  

Simulation of anyons by cold atoms with induced electric dipole moment

Jian Jing(荆坚)1, Yao-Yao Ma(马瑶瑶)1, Qiu-Yue Zhang(张秋月)1, Qing Wang(王青)2, Shi-Hai Dong(董世海)3
1 College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China;
2 College of Physics and Technology, Xinjiang University, Urumqi 830046, China;
3 Laboratorio de Información Cuántica, CIDETEC, Instituto Politécnico Nacional, UPALM, CDMX 07700, Mexico
Abstract  

We show that it is possible to simulate an anyon by a trapped atom which possesses an induced electric dipole moment in the background of electric and magnetic fields in a specific configuration. The electric and magnetic fields we applied contain a magnetic and two electric fields. We find that when the atom is cooled down to the limit of the negligibly small kinetic energy, the atom behaves like an anyon because its angular momentum takes fractional values. The fractional part of the angular momentum is determined by both the magnetic and one of the electric fields. Roles electric and magnetic fields played are analyzed.

Keywords:  anyons      cold atoms      induced electric dipole moment  
Received:  27 April 2020      Revised:  20 May 2020      Published:  05 August 2020
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.65.Pm (Relativistic wave equations)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11465006), 20200981-SIP-IPN, and the CONACyT (Grant No. 288856-CB-2016).

Corresponding Authors:  Jian Jing, Shi-Hai Dong     E-mail:  jingjian@mail.buct.edu.cn;dongsh2@yahoo.com

Cite this article: 

Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海) Simulation of anyons by cold atoms with induced electric dipole moment 2020 Chin. Phys. B 29 080303

[1] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[2] Aharonov Y and Casher A 1994 Phys. Rev. Lett. 53 319
[3] He X G and Mckellar B H J 1993 Phys. Rev. A 47 3424
[4] Wilkens M 1994 Phys. Rev. Lett. 72 5
[5] Dowling J P, Williams C P and Franson J D 1999 Phys. Rev. Lett. 83 2486
[6] Wilkens M 1998 Phys. Rev. Lett. 81 1534
[7] Wei H, Han R and Wei X 1995 Phys. Rev. Lett. 75 2071
[8] Ericsson M and Sjöqvist E 2001 Phys. Rev. A 65 013607
[9] Ribeiro L R, Furtado C and Nascimento J R 2006 Phys. Lett. A 348 135
[10] Furtado C, Nascimento J R and Ribeiro L R 2006 Phys. Lett. A 358 336
[11] Banerjee S, Agren H and Balatsky A V 2016 Phys. Rev. B 93 235134
[12] Bakke K and Furtado C 2009 Phys. Rev. A 80 032106
[13] Bakke K 2010 Phys. Rev. A 81 052117
[14] Bakke K, Ribeiro L R, Furtado C and Nascimento J R 2009 Phys. Rev. D 79 024008
[15] Bakke K, Ribeiro L R and Furtado C 2010 Cent. Eur. J. Phys. 8 893
[16] Oliveira A B and Bakke K 2016 Proc. R. Soc. A 472 20150858
[17] Oliveira A B and Bakke K 2016 Int. J. Mod. Phys. A 31 1650019
[18] Oliveira A B and Bakke K 2016 Eur. Phys. J. Plus 131 266
[19] Oliveira A B and Bakke K 2016 Ann. Phys. 365 66
[20] Oliveira A B and Bakke K 2017 R. Soc. Open Sci. 4 170541
[21] Basu B, Dhar D and Chatterjee S 2008 Phys. Lett. A 372 4319
[22] Lerda A 1992 Anyons, Quantum Mechanics of Particles with Fractional Statistics, Lecture Notes in Physics, New Series m:Monographs (Berlin:Springer-Verlag) p. 39
[23] Khare A 2005 Fractional Statistics and Quantum Theory 2nd Edn. (Singapore:World Scientific) p. 32
[24] Dirac P A M 1958 The Principles of Quantum Mechanics 4th Edn. (OXford:Oxford University Press) p. 144
[25] Sakurai J J 2017 Modern Quantum Mechanics (Cambridge University Press) p. 157
[26] Wilcezk F 1982 Phys. Rev. Lett. 48 1144
[27] Liang J Q and Ding X X 1988 Phys. Rev. Lett. 60 836
[28] Chakraborty T and Pietiläinen P 1995 The Quantum Hall Effect, fractional and Integral 2nd Edn. (Berlin:Springer-Verlag) p. 120
[29] Wilczek F 1990 Fractional Statistics and Anyon Superconductivity (Singapore:World Scientific) p. 65
[30] Deser S, Jackiw R and Templeton S 1982 Ann. Phys. 140 372
[31] Zhang S, Hanson T and Kivelson S 1989 Phys. Rev. Lett. 62 82
[32] Jackiw R and Pi S Y 1991 Phys. Rev. D 44 2524
[33] Forte S 1992 Rev. Mod. Phys. 64 193
[34] Zhang Y, Sreejith G J, Gemelke N D and Jain J K 2014 Phys. Rev. Lett. 113 160404
[35] Zhang Y, Sreejith G J and Jain J K 2015 Phys. Rev. B 92 075116
[36] Lundholm D and Rougerie N 2016 Phys. Rev. Lett. 116 170401
[37] Zhang J Z 2008 Phys. Lett. B 670 205
[38] Azevedo F S, Silva E O, Castro L B, Filgueiras C and Cogollo D 2015 Ann. Phys. 362 196
[39] Jackson J D 1999 Classical electrodynamics 3 Edn. (New York:Wiley) p. 583
[40] Shimizu F, Shimizu K and Takuma H 1991 Opt. Lett. 16 339
[41] Dunne G V, Jackiw R and Trugenberger C A 1990 Phys. Rev. D 41 661
[42] Dirac P A M 1964 Lecture notes on quantum mechanics (New York:Yeshiva University) p. 41
[43] Faddeev L D and Jackiw R 1988 Phys. Rev. Lett. 60 1691
[44] Baxter C 1995 Phys. Rev. Lett. 74 514
[1] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[2] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[3] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[4] Demonstration of a cold atom beam splitter on atom chip
Xiaojun Jiang(蒋小军), Xiaolin Li(李晓林), Haichao Zhang(张海潮), Yuzhu Wang(王育竹). Chin. Phys. B, 2016, 25(8): 080311.
[5] Electromagnetically induced transparency in a Zeeman-sublevels Λ-system of cold 87Rb atoms in free space
Xiaojun Jiang(蒋小军), Haichao Zhang(张海潮), Yuzhu Wang(王育竹). Chin. Phys. B, 2016, 25(3): 034204.
[6] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting, Su Dian-Qiang, Ji Zhong-Hua, Zhang Hong-Shan, Xiao Lian-Tuan, Jia Suo-Tang. Chin. Phys. B, 2015, 24(9): 093701.
[7] Oscillation of the spin-currents of cold atoms on a ring due to light-induced spin-orbit coupling
Xie Wen-Fang, He Yan-Zhang, Bao Cheng-Guang. Chin. Phys. B, 2015, 24(6): 060305.
[8] Comparison of two absorption imaging methods to detect cold atoms in magnetic trap
Wang Yan, Hu Zhao-Hui, Qi Lu. Chin. Phys. B, 2015, 24(2): 024203.
[9] Photostop of iodine atoms from electrically oriented ICl molecules
Bao Da-Xiao, Deng Lian-Zhong, Xu Liang, Yin Jian-Ping. Chin. Phys. B, 2015, 24(11): 113702.
[10] Systematically investigating the polarization gradient cooling in an optical molasses of ultracold cesium atoms
Ji Zhong-Hua, Yuan Jin-Peng, Zhao Yan-Ting, Chang Xue-Fang, Xiao Lian-Tuan, Jia Suo-Tang. Chin. Phys. B, 2014, 23(11): 113702.
[11] Nanoscale guiding for cold atoms based on surface plasmons alongtips of metallic wedges
Wang Zheng-Ling, Tang Wei-Min, Zhou Ming, Gao Chuan-Yu. Chin. Phys. B, 2013, 22(7): 073701.
[12] Production of 87Rb Bose-Einstein condensates in a hybrid trap
Duan Ya-Fan, Jiang Bo-Nan, Sun Jian-Fang, Liu Kang-Kang, Xu Zhen, Wang Yu-Zhu. Chin. Phys. B, 2013, 22(5): 056701.
[13] Optimal transport of cold atoms by modulating the velocity of traps
Han Jing-Shan, Xu Xin-Ping, Zhang Hai-Chao, Wang Yu-Zhu. Chin. Phys. B, 2013, 22(2): 023702.
[14] Quantum phase transitions of fermionic atoms in an anisotropic triangular optical lattice
Bao An, Chen Yao-Hua, Zhang Xiao-Zhong. Chin. Phys. B, 2013, 22(11): 110309.
[15] Saturation of biphoton generation near atomic resonance
Chen Peng, Qian Jun, Hu Zheng-Feng, Wang Yu-Zhu. Chin. Phys. B, 2012, 21(11): 114204.
No Suggested Reading articles found!