Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 056701    DOI: 10.1088/1674-1056/22/5/056701
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Production of 87Rb Bose-Einstein condensates in a hybrid trap

Duan Ya-Fan (段亚凡), Jiang Bo-Nan (姜伯楠), Sun Jian-Fang (孙剑芳), Liu Kang-Kang (刘亢亢), Xu Zhen (徐震), Wang Yu-Zhu (王育竹)
Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  We report a rapid evaporative cooling method using a hybrid trap which is composed of a quadrupole magnetic trap and a one-beam optical dipole trap. It contains two kinds of evaporative coolings to reach the quantum degeneracy: previously radio-frequency (RF) enforced evaporative cooling in the quadrupole magnetic trap and further runaway evaporative cooling in the optical dipole trap. The hybrid trap does not require a very high power laser such as that in the traditional pure optical trap, but still has a deep trap depth and a large trap volume, and has better optical access than the normal magnetic trap like the quadrupole-Ioffe-configuration (QUIC) cloverleaf trap. A high trap frequency can be easily realized in the hybrid trap to enhance the elastic collision rate and shorten the evaporative cooling time. In our experiment, pure Bose-Einstein condensates (BECs) with about 1×10^5 atoms can be realized in 6 s evaporative cooling in the optical dipole trap.
Keywords:  ultra-cold atoms      Bose-Einstein condensates      optical dipole trap      hybrid trap  
Received:  08 October 2012      Revised:  28 November 2012      Accepted manuscript online: 
PACS:  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  37.10.Jk (Atoms in optical lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974211), the National Basic Research Program of China (Grant No. 2011CB921504), and the Research Project of Shanghai Science and Technology Commission, China (Grant No. 09DJ1400700).
Corresponding Authors:  Wang Yu-Zhu     E-mail:  yzwang@mail.shcnc.ac.cn

Cite this article: 

Duan Ya-Fan (段亚凡), Jiang Bo-Nan (姜伯楠), Sun Jian-Fang (孙剑芳), Liu Kang-Kang (刘亢亢), Xu Zhen (徐震), Wang Yu-Zhu (王育竹) Production of 87Rb Bose-Einstein condensates in a hybrid trap 2013 Chin. Phys. B 22 056701

[1] Billy J, Josse V, Zuo Z C, Bernard A, Hambrecht B, Lugan P, Clement D, Sanchez-Palencia L, Bouyer P and Aspect A 2008 Nature 453 891
[2] Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895
[3] Lin Y J, Jimenez-Garcia K and Spielman I B 2011 Nature 471 83
[4] Osterloh K, Baig M, Santos L, Zoller P and Lewenstein M 2005 Phys. Rev. Lett. 95 010403
[5] Ruseckas J, Juzeliunas G, Ohberg P and Fleischhauer M 2005 Phys. Rev. Lett. 95 010404
[6] Lin Y J, Perry A R, Compton R L, Spielman I B and Porto J V 2009 Phys. Rev. A 79 063631
[7] Zaiser M, Hartwig J, Schlippert D, Velte U, Winter N, Lebedev V, Ertmer W and Rasel E M 2011 Phys. Rev. A 83 035601
[8] Majorana E 1932 Nuovo. 9 335
[9] Adams C S, Lee H J, Davidson N, Kasevich M and Chu S 1995 Phys. Rev. Lett. 74 3577
[10] Majorana E 1932 Nuovo Cimento 43 335
[11] Petrich W, Anderson M H, Ensher J R and Cornell E A 1995 Phys. Rev. Lett. 74 3352
[12] Gibble K, Chang S and Legere R 1995 Phys. Rev. Lett. 75 2666
[13] Myatt C J, Newbury N R, Ghrist R W, Loutzenhiser S and Wiemann C E 1996 Opt. Lett. 21 290
[14] Lye J E, Fletcher C S, Kallmann U, Bachor H A and Close J D 2002 Journal of Optics B-Quantum and Semiclassical Optics 4 57
[15] Chen S, Zhou X J, Yang F, Xia L, Sun Y Y, Wang Y Q and Chen X Z 2004 Chin. Phys. Lett. 21 2105
[16] Ke M, Yan B, Cheng F and Wang Y Z 2009 Chin. Phys. B 18 4274
[1] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[2] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[3] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[4] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[5] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[6] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[7] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[8] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[9] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[10] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[11] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[12] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[13] Interference properties of a trapped atom interferometer in two asymmetric optical dipole traps
Li-Yong Wang(王立勇), Xiao Li(李潇), Kun-Peng Wang(王坤鹏), Yin-Xue Zhao(赵吟雪), Ke Di(邸克), Jia-Jia Du(杜佳佳), and Jian-Gong Hu(胡建功). Chin. Phys. B, 2020, 29(12): 123701.
[14] Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis
Yu-Qin Yao(姚玉芹)† and Ji Li(李吉). Chin. Phys. B, 2020, 29(10): 103701.
[15] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
No Suggested Reading articles found!