Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087501    DOI: 10.1088/1674-1056/ab9736
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics

Qi Pan(潘祺), Bao-Jin Chu(初宝进)
Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences(CAS), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  The piezoelectric, ferromagnetism, and magnetoelectric response of BiFeO3-BaTiO3 ceramics with the compositions around the morphotropic phase boundary (MPB) of the solid solution are systematically investigated after the ceramics have been quenched from a high temperature. We find that the ferromagnetism of the quenched ceramics is greatly enhanced. An enhanced piezoelectric response d33 larger than 200 pC/N, which could be sustained up to 350℃, is measured. As a result of enhanced ferromagnetism and piezoelectric response, a large magnetoelectric response ~1.3 V/cm·Oe (1 Oe=79.5775 A·m-1) is obtained near the mechanical resonance frequency of the quenched ceramic samples. Our research also shows that in addition to the ferromagnetism and piezoelectric response, the mechanical quality factor is another important parameter to achieve high magnetoelectric response because the physical effects are coupled through mechanical interaction in BiFeO3-based materials. Our work suggests that quenching is an effective approach to enhancing the magnetoelectric response of BiFeO3-based materials and the materials belong to single-phase multiferroic materials with high magnetoelectric response.
Keywords:  multiferroic materials      magnetoelectric      ferromagnetic      piezoelectric  
Received:  28 March 2020      Revised:  24 May 2020      Accepted manuscript online: 
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  77.55.H- (Piezoelectric and electrostrictive films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51672261 and 51373161) and the National Key Research and Development Program of China (Grant No. 2017YFA0701301).
Corresponding Authors:  Bao-Jin Chu     E-mail:  chubj@ustc.edu.cn

Cite this article: 

Qi Pan(潘祺), Bao-Jin Chu(初宝进) Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics 2020 Chin. Phys. B 29 087501

[1] Khomskii D I 2006 J. Magn. Magn. Mater. 306 1
[2] Fiebig M, Lottermoser T, Frohlich D, Goltsev A V and Pisarev R V 2002 Nature 419 818
[3] Ravez J, Abrahams S C and Pape R D 1989 J. Appl. Phys. 65 3987
[4] Sarraute S, Ravez J, VonderMuhll R, Bravic G, Feigelson R S and Abrahams S C 1996 Acta. Cryst. B. 52 72
[5] Ravez J 1997 J. Phys. III France 7 1129
[6] Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13
[7] Palai R, Katiyar R S, Schm H, Tissot P, Clark S J, Robertson J, Redfern S A T, Catalan G and Scott J F 2008 Phys. Rev. B 77 014110
[8] Catalan G and Scott J F 2009 Adv. Mater. 21 2463
[9] Qi X D, Dho J, Tomov R, Blamire M G and MacManus-Driscoll J L 2005 Appl. Phys. Lett. 86 062903
[10] Wang J, Neaton J B and Zheng H 2003 Science 299 1719
[11] Sharma P, Kumar A and Varshney D 2015 Solid State Commun. 220 6
[12] Kumara M and Yadav K L 2007 Appl. Phys. Lett. 91 242901
[13] Lee Y H, Wu J M and Lai C H 2006 Appl. Phys. Lett. 88 042903
[14] Kim J K, Kim S S and Kim W J 2006 Appl. Phys. Lett. 88 132901
[15] Yan T L, Chen B, Liu G, Niu R P, Shang J, Gao S, Xue W H, Jin J, Yang J R and Li R W 2017 Chin. Phys. B 26 067702
[16] Itoh N, Shimura T, Sakamoto W and Yogo T 2007 Ferroelectrics 356 19
[17] Zhang M, Zhang X Y, Qi X W, Li Y, Bao L and GuY H 2017 Ceram. Int. 43 16957
[18] Behera C and Pattanaik A K 2019 J. Mater. Sci-Mater. El. 089 00140
[19] Ryua G H, Hussaina A, Leea M H, Malik R A, Songa T K, KimW J and Kim M H 2018 J. Eur. Ceram. Soc. 18 30341
[20] Du X H, Zheng J H, Belegundu U and Uchino K 1998 Appl. Phys. Lett. 72 2421
[21] Wei Y X,Wang X T, Zhu J T, Wang X L and Jia J J 2013 J. Am. Ceram. Soc. 96 3163
[22] Zhen T, Jiang Z G and Wu J G 2016 Dalton Trans. 45 11277
[23] Lee M H, Kim D J, Park J S, Kim S W, Song T K, Kim M H, Kim W J and Do D 2015 Adv. Mater. 27 6976
[24] He H, Zhao J T, Luo Z L, Yang Y J, Xu H, Hong B, Wang L X, Wang R X and Gao C 2016 Chin. Phys. Lett. 33 67502
[25] Zhao K H, Wang Y H, Shi X L, Liu N and Zhang L W 2015 Chin. Phys. Lett. 32 87503
[26] Rao W, Wang Y B, Wang Y A, Gao J X, Zhou W L and Yu J 2014 Chin. Phys. Lett. 31 017503
[27] Wang Y A, Wang Y B, Rao W, Gao J X, Zhou W L and Yu J 2013 Chin. Phys. Lett. 30 047502
[28] Gupta R, Shah J, Chaudhary S and Kotnala R K 2015 J. Alloys Compd. 638 115
[29] Luo L, Jiang N, Zou X, Shi D, Sun T, Zheng Q, Xu C G, Lam K H and Lin D M 2015 Phys. Status Solidi A 212 2012
[30] Zhang M, Zhang X Y, Qi X W, Zhu H G, Li Y and Gu Y H 2018 Ceram. Int. 44 21269
[31] Bichurin M I, Filippov D A and Petrov V M 2003 Phys. Rev. B 68 132408
[32] Filippov D A, Bichurin M I, Nan C W and Liu J M 2005 J. Appl. Phys. 97 113910
[33] Jia Y M, Luo H S, Zhao X Y and Wang F F 2008 Adv. Mater. 20 4776
[34] Pan Q, Fang C, Luo H S and Chu B J 2019 J. Eur. Ceram. Soc. 39 1057
[35] Pan Q and Chu B J 2019 J. Appl. Phys. 125 154102
[36] IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176-1987, IEEE, New York, 1987
[37] Unruan S, Unruan M, Monnor T, Priya S and Yimnirun R 2015 J. Am. Ceram. Soc. 98 3291
[38] Kumar M M, Srinivas A and Suryanarayana S V 2000 J. Appl. Phys. 87 855
[39] Cao L, Zhou C R, Xu J W, Li Q L, Yuan C L and Chen G H 2016 Phys. Status Solidi A 213 52
[40] Wan Y, Li Y, Li Q, Zhou W, Zheng Q J, Wu X C, Zhu B P and Lin D M 2014 J. Am. Ceram. Soc. 97 1809
[41] Kumar M M, Srinath S, Kumar G S and Suryanarayana S V 1998 J. Appl. Phys. 188 203
[42] Wang T H, Ding Y, Tu C S, Yao Y D, Wu K T, Lin T C, Yu H H, Ku C S and Lee H Y 2011 J. Appl. Phys. 109 07D907
[43] Gotardo R A M, Viana D S F, Olzon-Dionysio M, Souza S D, Garcia D, Eiras J A, Alves M F S, Cotica L F, Santos I A and Coelho A A 2012 J. Appl. Phys. 112 104112
[44] Fujii T, Jinzenji S and Asahara Y 1988 J. Appl. Phys. 64 5434
[45] Bai F M, Wang J L, Wuttig M, Li J F, Wang N G, Pyatakov A P, Zvezdin A K, Cross L E and Viehland D 2005 Appl. Phys. Lett. 86 032511
[46] Ma J, Hu J M, Li Z and Nan C W 2011 Adv. Mater. 23 1062
[1] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[2] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
[3] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[4] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[5] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[6] Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn
Guangqiang Wang(王光强), Zhanghao Sun(孙彰昊), Xinyu Si(司鑫宇), Shuang Jia(贾爽). Chin. Phys. B, 2020, 29(7): 077503.
[7] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[8] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[9] Exploring ferromagnetic half-metallic nature of Cs2NpBr6 via spin polarized density functional theory
Malak Azmat Ali, G Murtaza, A Laref. Chin. Phys. B, 2020, 29(6): 066102.
[10] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[11] Improvement of high-frequency properties of Co2FeSi Heusler films by ultrathin Ru underlayer
Cuiling Wang(王翠玲), Shouheng Zhang(张守珩), Shandong Li(李山东), Honglei Du(杜洪磊), Guoxia Zhao(赵国霞), Derang Cao(曹德让). Chin. Phys. B, 2020, 29(4): 046202.
[12] Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22
Yanfen Chang(畅艳芬), Kun Zhai(翟昆), Young Sun(孙阳). Chin. Phys. B, 2020, 29(3): 037701.
[13] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[14] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[15] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
No Suggested Reading articles found!